
Backup system for Skolelinux
�

Computer systems administration, depth study

Morten Werner Olsen

werner@skolelinux.no

Teaching supervisor (NTNU) : Anders Christensen
Teaching supervisor (Skolelinux) : Frode Jemtland

Department of Computer and Information Science, NTNU

November 28th, 2003

Preface

This is the report in the project part of �Computer systems administration,
depth study�. The project is accomplished by Morten Werner Olsen, Mas-
ter of Technology student at the Department of Computer and Information
Science, NTNU.
This project is accomplished for The Skolelinux Project. Skolelinux is a
custom Debian GNU/Linux distribution for schools.
The project deals with backup and its main task is to adapt and document
a backup solution for Skolelinux.
Many thanks to everyone who helped me out with this project. Thanks
to Anders Christensen (NTNU) and Frode Jemtland (Skolelinux) for doing
great jobs as my supervisors. Thanks to Petter Reinholdtsen (Skolelinux) for
outstanding technical support. Thanks to Knut Yrvin (Skolelinux) for proof-
reading my report. Thanks to everyone on the Skolelinux IRC channel and
email-lists for great support. Thanks to Klaus Ade Johnstad (Skolelinux),
Marius Kotsbak (Skolelinux), and Per Harald Westby (Skolelinux) for testing
the product and reporting bugs for me to �x.
This report will be available in electronic form as well as source code for
download on the projects web page.
Project web page:
http://developer.skolelinux.no/info/studentgrupper/2003-backup/

Trondheim, November 28th, 2003

�����������
Morten Werner Olsen
werner@skolelinux.no

Contents

1 Introduction 1
1.1 The Skolelinux Project . 1
1.2 The backup system . 2
1.3 Language . 2
1.4 Licenses . 2

2 Requirement speci�cation 3
2.1 Introduction . 3
2.2 Primary system description 3
2.3 General requirements . 4

2.3.1 Availability and reliability 4
2.3.2 Security . 5
2.3.3 Capacity . 5
2.3.4 Extensibility . 5
2.3.5 User-friendliness . 5

2.4 Requirements to the systems functional properties 5
2.5 Sketch of the technical solution 7
2.6 Documentation . 8

3 Preliminary studies 9
3.1 Skolelinux . 9

3.1.1 Ambitions . 9
3.1.2 Requirements . 10

3.2 Backup software . 11
3.2.1 Preliminary sorting . 17
3.2.2 Test: the remaining software 19
3.2.3 Conclusion . 23

4 Design 25
4.1 Architecture . 25

4.1.1 Overview . 25
4.1.2 Con�guration . 27
4.1.3 Backup . 29

vi CONTENTS

4.1.4 Restore . 31
4.1.5 Maintenance . 31

4.2 Software packages . 33
4.3 Webmin . 34

4.3.1 General . 34
4.3.2 Backup details . 35
4.3.3 Restore . 39
4.3.4 Maintenance . 42
4.3.5 SSH keys . 44

4.4 Backup server . 44
4.5 LDAP backup . 46
4.6 Security . 47

5 Implementation 49
5.1 Design change . 49
5.2 Programming language . 50
5.3 Backup software . 50

5.3.1 librsync . 51
5.3.2 rdi�-backup . 51

5.4 Package: slbackup . 51
5.5 Package: webmin-slbackup . 52

5.5.1 libexpect-perl . 53
5.6 Implementation on the Skolelinux CD 53

6 Installation 55
6.1 Debian stable environment . 55
6.2 Skolelinux environment . 55
6.3 Installation tests . 56

7 Conclusion 57
7.1 What has been achieved? . 57
7.2 Achieving the requirement speci�cation 58
7.3 What could have been done di�erent? 60
7.4 Further work . 61
7.5 Releasing slbackup as an Open Source project 63
7.6 Working method . 63

Bibliography 66

Glossary 67

A Testlog: FauBackup 69
A.1 Installation and con�guration 69
A.2 Testing hard links, sym links and �les with holes 69

CONTENTS vii

B Testlog: rdi�-backup 71
B.1 Installation and con�guration 71
B.2 Testing hard links, sym links and �les with holes 71

C Testlog: rlbackup 73
C.1 Installation and con�guration 73
C.2 Testing hard links, sym links and �les with holes 74

D Users manual 75
D.1 Skolelinux Backup . 76
D.2 Installasjon . 76

D.2.1 Ny klient . 76
D.3 Kon�gurasjon . 77

D.3.1 General . 78
D.3.2 Backup details . 78
D.3.3 Restore . 85
D.3.4 Maintenance . 86
D.3.5 SSH keys . 87

D.4 Konsistenssjekk . 88
D.5 Referanser . 89

E Source code: slbackup 91
E.1 /etc/slbackup/slbackup.conf 91
E.2 /usr/share/perl5/SLBackup.pm 91
E.3 /etc/cron.d/slbackup . 93
E.4 /usr/share/slbackup/client/slbackup-cron 93

F Source code: webmin-slbackup 99
F.1 WebminSLBackup.pm . 99

List of Figures

2.1 Sketch of the Skolelinux network 7
2.2 Storage of daily, weekly and monthly backups 7

4.1 Overview of the system with relevant processes and storage
systems . 26

4.2 Overview of the system with the processes that are relevant
to the con�guration phase �lled 28

4.3 Interaction between the active processes in the con�guration
phase . 28

4.4 Overview of the system with the processes that are relevant
to the backup phase �lled . 29

4.5 Interaction between the active processes in the backup phase 30
4.6 Overview of the system with the processes that are relevant

to the restore phase �lled . 31
4.7 Interaction between the active processes in the restore phase . 32
4.8 Overview of the system with the processes that are relevant

to the maintenance phase �lled 32
4.9 Interaction between the active processes in the maintenance

phase . 33
4.10 Snapshot of the �General� page 35
4.11 Snapshot of the �Backup details� page 36
4.12 Snapshot of the �Con�gure client� page 37
4.13 Snapshot of the �Add client� page 38
4.14 Snapshot of the �Delete client� page 38
4.15 Snapshot of the �Server con�guration� page 39
4.16 Snapshot of the �Restore� main page 40
4.17 Snapshot of the �Choose �les/directories� page 40
4.18 Snapshot of the �Restore details� page 41
4.19 Snapshot of the �Restore results� page 42
4.20 Snapshot of the �Maintenance� page 43
4.21 Snapshot of the �Maintenance - delete� page 43
4.22 Snapshot of the �Maintenance - delete - con�rm� page 44
4.23 Snapshot of the �SSH keys� page 45

x LIST OF FIGURES

4.24 Snapshot of the �SSH keys - con�rm� page 46
4.25 Interaction between the two slapd-processes and other parts of

the system . 47

D.1 Skjermbilde av �General� siden i vevgrensesnittet 78
D.2 Skjermbilde av �Backup details� siden i vevgrensesnittet . . . 79
D.3 Skjermbilde av �Con�gure client� siden i vevgrensesnittet . . . 81
D.4 Skjermbilde av �Add client� siden i vevgrensesnittet 83
D.5 Skjermbilde av �Server con�guration� siden i vevgrensesnittet 84
D.6 Skjermbilde av �Restore� siden i vevgrensesnittet 85
D.7 Skjermbilde av �Restore details� siden i vevgrensesnittet . . . 86
D.8 Skjermbilde av �Maintenance� siden i vevgrensesnittet 87
D.9 Skjermbilde av �Maintenance - delete� siden i vevgrensesnittet 88
D.10 Skjermbilde av �SSH keys� siden i vevgrensesnittet 89

Summary

This project is about backup, an important service in a computer network.
The customer, Skolelinux, didn't have a working and pre-con�gured backup
solution with a graphical interface that system administrators at the schools
could use. A �release critical bug� was �led, as Skolelinux wanted a working
backup solution installed and con�gured �out of the box� before releasing
version 1.0 of their custom Debian GNU/Linux distribution.
The project was divided in two main parts. The �rst part was to �nd,
evaluate, and test the most relevant available backup solutions for Linux
and �nd one that will suit Skolelinux needs. The second part was to adopt
and document this backup software for Skolelinux.
The software that was choosen as the underlying backup software in Skole-
linux' backup solution was rdi�-backup. rdi�-backup was choosen because that
it ful�lls all the requirements for backup software in Skolelinux, and for its
Debian packaging, disk usage, network bandwidth usage, documentation,
activity, and support.
The product that this project has lead in to is called slbackup1 and is us-
ing rdi�-backup as the underlying backup software. slbackup consists of two
packages, one that handles the backups and one including a web interface
that handles the con�guration and restore parts. These software packages
are released as Open Source software under the GPL license.
slbackup is included in the Skolelinux distribution and will be automatically
installed and con�gured when a Skolelinux installation is completed.

1slbackup - Skolelinux Backup

Chapter 1

Introduction

This project is a component of the course �Computer systems administration,
depth study� in the 9th term (of 10) in the Master of Technology study at
the Department of Computer and Information Science, NTNU. The project
assignment is as follows:

Find, evaluate, and for the most relevant choises test available
backup solutions for Linux and adapt and document one of them
for Skolelinux.

1.1 The Skolelinux Project

The customer for this project is The Skolelinux Project, from now on called
Skolelinux. Skolelinux is developing a Custom Debian GNU/Linux distribu-
tion for schools. Their aim is to make it simple to install and maintain. The
Skolelinux Project is mainly based on people working in their spare time
at no charge. In a community like Skolelinux, which practise a so called
do-o-cracy (described in [Yrv01] (Norwegian)), the people who actually do
something are the people that decides.
The main communication channels within Skolelinux is e-mail lists and IRC,
but there are also organized developer gatherings about four times a year
where the developers can meet face to face. On these gatherings discussions,
bug squashing and testing are prioritized. When the distribution is going to
be used in schools then Open Source[Ray01], free of charge and not requiring
expensive hardware are unalterable requirements. When having Skolelinux
as the customer, Skolelinux requires that the student(s) actively use the com-
munication channels that are established and used by the other developers.
The student(s) are also expected to use CVS when developing software and
documentation.

2 Introduction

The ideal student project for Skolelinux is a project that not dies when the
project period is over, but that the code/solutions developed are maintained
also after the student(s) have �nished the project. The maintainer could be
the student(s) or someone else that is interested in the project.
Skolelinux web site: http://www.skolelinux.no/

1.2 The backup system

The Skolelinux distribution has a goal that is to o�er all services that is
needed in a computer network on one CD, with a simple installation pro-
cedure. In August 2003 Skolelinux was still missing a autocon�gured and
working backup solution in their distribution. The goal of this project is to
supply Skolelinux with a con�gured backup system which is working �out of
the box�.
Writing new backup software is not an option, as there exists a lot of Open
Source backup software that should suit Skolelinux needs. Skolelinux has
a lot of requirements for a backup system, that are dealt with in detail in
chapter 2. The main requirement is that the system shall be automatically
con�gured in the Skolelinux installation and that it shall be easy for the sys-
tem administrator to use. As Webmin is widely used for most con�guring in
Skolelinux, a Webmin-module for con�guring the backup system is preferred.

1.3 Language

This report is written in English because a lot of the new Skolelinux devel-
opers do not speak Norwegian. The system is has users in Norway, German,
France, and Brazil. Skolelinux wants the Users Manual to be written in Nor-
wegian, because Skolelinux are putting together a System Administration
handbook for Norwegian teachers and schools. They have decided that all
documentation produced by student projects shall be written in Norwegian.

1.4 Licenses

All software created in this project shall be released under the General Public
License (GPL).

Chapter 2

Requirement speci�cation

The requirement speci�cation for the backup system in this project was
prepared as a separate document in the beginning of the project. It has been
discussed on two of the mailinglists for developers and users of Skolelinux.
Even if the requirement speci�cation is not o�cially adopted, the lack of
loud protests on the mailinglists is as sort of approval. The rest of this
chapter is the requirement speci�cation that was presented on the Skolelinux
mailinglists.

2.1 Introduction

The Skolelinux project are developing a Linux distribution for schools. Their
aim is to make it simple to install and maintain. Furthermore, to be of real
use to primary school and above, it should be available in as many local
languages as possible. For Norway, that means both the o�cial standards of
Norwegian (Bokmål and Nynorsk) as well as northern Sami.
Skolelinux currently does not have a working con�guration for backup. This
requirement speci�cation, RS, describes Skolelinux's requirements for a back-
up solution.
The word �backup service� is de�ned as the product this requirement speci�-
cation describes and �user� is de�ned as the user of the backup service, which
can be both the system administrator, SA, and the end users, teachers, and
pupils.

2.2 Primary system description

A Skolelinux-network mainly contains a �le server, a LTSP-server and thin
clients. The backup service is supposed to back up home-directories on the

4 Requirement speci�cation

�le server, the user- and con�guration database (LDAP) on the �le server
and con�guration �les on the �le server and LTSP-server(s).
Skolelinux wants a backup service that is working �out of the box�, and
of course is a full backup service where the SA easily can restore �les and
directories in case of an accident. The operator interface shall be as easy as
possible.
A main goal with the system is to eliminate the pro-active and routine tasks
of backup. This is important as the teachers that have the responsibility for
doing the system administration task do not have very much time for this
(three hours a week, depending on the size of the school). The system shall
inform the SA when it need maintenance.
The backup service shall be so general that other distributions than Skole-
linux can reuse the design and implementation.

2.3 General requirements

This chapter speci�es the general requirements with respect to the backup
service. The most important requirements are:

� must be able to be distributed with the Skolelinux CD (GPL, BSD or
similar license)

� must support the architecture, the software, and the hardware that is
used in Skolelinux

� both the backup- and restore-part must be extensively tested
� all communication between the backup server and the �le server/LTSP-
server(s) must be encrypted

� must be possible to place the backup server on another network than
the �le server and LTSP-server(s)

2.3.1 Availability and reliability

Backup shall start after 12PM and be completed before 5am (except for
initial backup). The system shall be available for restore between 6am and
11PM.
The backup service shall in case of any failure send a failure report to the
SA.
The schools/institutions who want to use the backup system have to decide
how much money they will invest in hardware, but this backup project must

2.4 Requirements to the systems functional properties 5

document the available options and how they impact the reliability and
functionality of the system.

2.3.2 Security

The backup service must be secured in a way that denies intruders (over the
network). No other computers than the �le server and the LTSP-server(s)
shall be accepted by the backup server. The schools/institutions have to
decide how much money they will invest in physically securing the backup
server (burglary, physical destruction etc.). The documentation shall point
out possible options to increase the backup servers (physically) security.

2.3.3 Capacity

The network bandwidth shall be at least 100Mbit/s. The speed on initial
backup shall be at least 2GB/h.
The schools/institutions who are going to use the backup system have to
decide how much capacity (hard drive, CPU, and memory) they can a�ord.
The documentation shall contain guidelines to planning how much capacity
that is needed for the service to work in a satisfactorily way.

2.3.4 Extensibility

It shall be possible to extend the backup servers capacity with more hard
disk, CPU, and memory.

2.3.5 User-friendliness

There shall not be made any demands on the SA's IT-knowledge. Every
manual operation that is o�ered by the backup service shall be brie�y de-
scribed in the documentation, and the documentation should be easy to
understand.

2.4 Requirements to the systems functional prop-
erties

It is required that the backup service have the following properties:

� take daily backup of speci�ed directories/�les to a hard drive on an ex-
ternal backup server (on a Skolelinux-installation these directories/�les
would be prede�ned, but changes shall be possible)

6 Requirement speci�cation

� the daily backup transfer rate (not initial backups) shall exceed 1GB/h

� keep ownership and privileges to �les and directories

� perform restore of directories/�les (user decides placing)

� restore of 1MB data shall at a maximum take 2 minutes (excluding the
SA's preparations and keyboard typing)

� the backup software on the �le server and LTSP-server(s) shall be
included on the Skolelinux CD and the only input at con�guration is
the IP-address to the backup server and a password

� the backup server is installed on a separate computer and shall only
require input from the SA about which computers (IP-addresses) it
shall receive backup from, which computer it shall use as syslog-server
(if any), and the email-address to the SA

It is desirable that the backup service have the following properties:

� archives are stored encrypted on the backup server (at least 128bits
key length and a cipher equal to or better than DES)

� possibility to fetch data from the backup server (over the network) for
an o�ine backup

� the end-user, pupils, and teachers shall be able to restore their personal
�les (the SA must be able to enable or disable this service)

� the backup system is managed through the Webmin interface, and the
backup system's Webmin-module should have the following properties:

� de�ne all �les and directories to be backed up at each server
� de�ne o�-site or on-site machines where backup should be stored
on daily, weekly and monthly basis

� check the quality of backup-�les (monitor �le sizes, numbers, suc-
cessful/failed logins, disk full, disk failure etc.)

� de�ne mail and SMS recipients in case of trouble and errors
� maintain logs
� provide browser facilities to restore �les from backup
� restore data
� syslog monitoring

2.5 Sketch of the technical solution 7

2.5 Sketch of the technical solution

Figure 2.1 shows how the Skolelinux-network is planned with the backup
server included. The plan is to take daily backup of �les/directories at the
�le server and the LTSP-server(s).

Backupserver

Fileserver LTSP−server

Thin client

Thin client

Figure 2.1: Sketch of the Skolelinux network

Daily backups are to be stored for a month, weekly backups for four months
and monthly backups for one year. This is illustrated in �gure 2.2.

1 2 3 4 5 6 7 8 9 10 11 12
months

monthly

weekly

daily

Figure 2.2: Storage of daily, weekly and monthly backups

8 Requirement speci�cation

2.6 Documentation

All code that is written shall be well documented.
These following documents shall be included (in Norwegian):

� User's manual
(contains information about how to do restore of �les/directories)

� System administrator's manual
(contains information about how to install and con�gure the backup
service, alternative actions to make the backup server more reliable,
alternative actions to increase the backup servers physical security,
information about how to plan the capacity of the service and how to
upgrade the backup server with hard drive, CPU and memory)

Chapter 3

Preliminary studies

In this chapter Skolelinux and their ambitions and requirements will be de-
scribed. The chapter will also contain a study of di�erent backup systems,
the reasons for not choosing most of them, and the results and comments
from tests that have been carried out.

3.1 Skolelinux

Skolelinux wants their distribution to be as simple to install and maintain as
possible. When it comes to a backup solution it is acceptable with an initial
amount of work to con�gure and install the backup system, but the system
administrators in the schools are often teachers who do not have time to many
proactive and routine tasks. The backup system must of course inform the
system administrators when there is work to be done that are critical to the
systems main tasks.

3.1.1 Ambitions

Under the development of Skolelinux, it is a goal to use as much software
and solutions that are already developed or under development as possible.
The main reason for that is when a software project is active, Skolelinux do
not have to maintain that part themselves and one will achieve a greater pro-
gression and can concentrate on the main goal, which is developing an easy
to install and a next to maintenance free Linux distribution for schools. One
example is that Skolelinux is built on the Debian GNU/Linux distribution
and uses a lot of the software that is already prepared for Debian.
This will also be important when the backup system in Skolelinux shall
be put together. As little time as possible should be used to develop a
piece of software that already has been developed. Time should be used

10 Preliminary studies

to choose the right software and to put this together and make it as easy
as possible to install and maintain for the schools system administrators.
Writing documentation is also a part of the project.

3.1.2 Requirements

If a backup system is to be shipped with the Skolelinux distribution, some
requirements must be met (see chapter 2). These requirements also applies
to external software used in the backup system.

� The backup system and the external programs used in the backup
system must have a license similar to GPL or BSD. This because
Skolelinux shall be a free alternative to the schools and because Skole-
linux is build on Debian GNU/Linux where all programs included must
follow The Debian Free Software Guidelines[Sch].

� The backup system must support the architecture, the software and
the hardware used in Skolelinux.

� It must be possible to place the backup server on another network than
the �le server and LTSP server(s).

� The communication between the backup server and the machines that
shall be backed up, must be encrypted.

� It must be possible to specify which �les and directories that shall be
backed up.

� The uid/gid ownership and privileges must be stored as well.

� The backup system has to store the backup to a hard-disk. The reason
for this is that tape is expensive, unreliable and leads to routine work
for the system administrator.

� The backup system must handle snapshots in such a way that it is
possible to restore �les from di�erent points of time.

� The software used in the backup system should be packaged for Debian.
Preferably it should be packaged for the Debian stable release, but it
better that it only exist in Debian testing or unstable than it is not
packaged for Debian at all.

3.2 Backup software 11

3.2 Backup software

afbackup
Author : Albert Flugel
Last stable release : March 1st, 2003
License : GPL
Web site : http://sourceforge.net/projects/afbackup/
afbackup is a client-server backup system that o�ers several workstations a
centralized backup service. The backup can be started by a cronjob on each
workstation, or remotely from a central administration host. Any streaming
device can be used for storing the data, but afbackup is designed for using
tapes.
afbackup also provides authentication of clients, access restrictions for the
streamer device, a lot of functionality for handling tapes, client-side per-�le
compression for reliability, client and server bu�ering for maximal through-
put and a Tk-based graphical con�guration tool.

a�o
Author : Koen Holtman
Last stable release : October 10th, 2001
License : GPL
Web site : http://freshmeat.net/projects/a�o/
A�o is a utility that makes cpio-format archives. It deals with input data
corruption and supports multi-volume archives during interactive operation.
A�o is best used as an �archive engine� in a backup script.

Amanda - Advanced Maryland Automatic Network Disk Archiver
Author : James da Silva
Last stable release : June 27th, 2003
License : BSD
Web site : http://www.amanda.org/
Amanda is backup utility developed at the University of Maryland. It's main
goal is to back up multiple hosts to a single backup drive. According to John
R. Jackson and Alexandre Oliva, which are members of the Amanda Core
Development Team, Amanda is as advanced as a free backup utility gets and
that Amanda has an installed base of at least 1500 sites. Amanda uses native
dump and/or GNU tar and can back up a large number of workstations
running multiple versions of Unix.
The Amanda approach is to use a �holding disk� on the tape server machine,
do several dumps in parallel into �les in the holding disk, and have an inde-
pendent process that moves the data from the holding disk to a tape device.

12 Preliminary studies

Amanda provides its own network protocol on top of TCP and UDP. Each
client backup program writes data to standard out, which Amanda collects
and transmits to the tape server host. This allows Amanda to use compres-
sion and/or decryption on the data transferred over the network. [Pre99,
pg. 146-150]

Arkeia
Author : Arkeia Corporation
Last stable release : July 28th, 2003
License : Proprietary
Web site : http://www.arkeia.com/
Arkeia is a commercial backup system developed by the former Knox Soft-
ware, now Arkeia Corporation. It is mainly developed for use with a tape
device or bigger robotic tape library. According to their web site[ark] Arkeia's
server software is available for many di�erent operating systems including
AIX, HP-UX, IRIX, Linux, Solaris, Tru64 and UnixWare. They has client
software for even more operating systems, e.g. BSD, Digital Unix, Mac OS
X, Novell and Windows 95/98/NT4/ME/2000/XP/2003.
According to Marcel Gagné, Arkeia is a sophisticated and powerful backup
solution with some initial strangeness, a cool graphical interface with some
cryptic error-messages and lack of troubleshooting information. In addition
to the regular product with a regular license Arkeia o�ers a product they call
Arkeia Light, which is a free version of the same product but with support
for only one Linux server, one tape drive and two clients in either a personal
or commercial environment. [Gag03]

Backup Exec
Author : Veritas Software
Last stable release : January 22th, 2003
License : Proprietary
Web site : http://www.veritas.com/us/products/backupexec/
Backup Exec is a high-performance, easy-to-use, �exible network backup-
and-restore solution designed for departmental and workgroup environments.
Backup Exec provides certi�ed solutions for Microsoft Windows and Novell
NetWare environments. Veritas web pages do not provide information about
any solutions that �ts in a clean Linux environment. [bacb]

BackupPC
Author : Craig Barratt
Last stable release : June 14th, 2003
License : GPL
Web site : http://backuppc.sourceforge.net/

3.2 Backup software 13

BackupPC is a system for backing up Linux andWindows PCs and laptops to
a server's disk. According to their web site BackupPC is highly con�gurable
and easy to install and maintain. BackupPC is written in Perl and extracts
backup data via SMB using Samba, tar over SSH/rsh/NFS, or rsync.
One of the most important features for BackupPC is that identical �les
from multiple backups from the same or di�erent PCs are stored only once
resulting in substantial savings in disk storage and disk I/O. Other impor-
tant features is compression support, a powerful web user interface, mobile
environment support (laptops using dynamical IP's), periodical email's to
PC-users that haven't had their PC backed up for a while, and detailed
documentation.
According to BackupPC's web site, BackupPC is tested on Linux, Freenix,
and Solaris hosts, and Linux, Win95, Win98, Win2000 and WinXP clients.

Bacula - The Network Backup Solution
Author : Kern Sibbald
Last stable release : August 1st, 2003
License : GPL
Web site : http://www.bacula.org/
Bacula is a set of computer programs that permits backup management,
recovery and veri�cation of computer data across a network of computers of
di�erent kinds. In technical terms, it is a network client/server based backup
program. Bacula is designed to use removable media for storage, but it also
support hard drives.
According to their web site [baca] Bacula is relatively easy to use and e�-
cient, while o�ering many advanced storage management features that make
it easy to �nd and recover lost or damaged �les. Bacula has been built and
tested on: RedHat, Solaris and FreeBSD.

BRU Backup and Restore Utility
Author : The Tolis Group, Inc.
Last stable release : -
License : Proprietary
Web site : http://www.tolisgroup.com/
BRU is a series of backup software developed by the Tolis Group. According
to their web site [tol], BRU-Pro, the Tolis Groups highest level application,
supports simultaneously backups of multiple clients to di�erent tape drives,
network tra�c encryption, network data compression, end-user restore of
personal �les and additional more or less interesting features.
BRU has server software available for Linux and client software available for
Linux, x86-based Windows, Mac OS X, and a lot of Unix systems.

14 Preliminary studies

Burt - The backup and recovery tool
Author : Eric Melski and Dean Jansa
Last stable release : May 12th, 1999
License : Freely distributable own license
Web site : http://www.cs.wisc.edu/�jmelski/burt/
Burt is a freely distributed parallel network backup system written at the
University of Wisconsin, Madison. It is designed to backup large heteroge-
neous networks. Burt uses Tcl and standard backup programs like dump
and tar. It is able to back up many di�erent data sources, including UNIX
and Windows workstations, AFS based storage, and others. Burt supports
parallel backups to ensure high backup speeds and checksums to ensure data
integrity. The principal contribution of Burt is that it provides a powerful
I/O engine within the context of a �exible scripting language; this combina-
tion enables graceful solutions to many problems associated with backup of
large installations. [Mel99]

Dirvish
Author : J.W. Schultz
Last stable release : July 15th, 2003
License : GNU
Web site : http://www.pegasys.ws/dirvish/
Dirvish is a utility that maintains multiple backups on online storage. The
utility is built up on rsync, and each backup is available as a sort of snapshot
directory, where common �les are shared between the di�erent backup gener-
ations. For changed �les only those parts that actually change are transfered
over the network.
Even though the backups are made incrementally, each image can be used
independently for restores or to make o�-site copies or archives. The removal
of an image will have no e�ect on other images.

FauBackup
Author : Volmar Sieh and Martin Waitz
Last stable release : September 2nd, 2003
License : GPL
Web site : http://faubackup.sourceforge.net/
FauBackup is a backup system which uses a �le system on a hard drive as
backup media. The way FauBackup does incremental backup, is to hard-
link the �les which are not changed since last backup. All backups can be
accessed using standard �le system tools like ls, �nd, cp et al. FauBackup
support usage of SSH to store the backup on a remote system or fetch the
�les to backup from a remote client.

3.2 Backup software 15

It is possible to con�gure FauBackup to do a speci�ed number of daily,
weekly, monthly and yearly backups, i.e. FauBackup cleans up/deletes the
old backups that is not supposed to exist.

Hdup
Author : Miek Gieben
Last stable release : August 9th, 2003
License : GPL
Web site : http://www.miek.nl/projects/hdup/hdup.shtml
Hdup is a tar-based backup utility which main features are encryption, re-
mote storage and incremental dumps. It has been tested on Linux (packaged
for Debian and Gentoo), Solaris and FreeBSD, but does also work on other
versions of Unix.
Hdup uses three backup �formats�; monthly, weekly and daily. The monthly
backup is a full dump of the �le system, the weekly backup is an incremental
dump of the �lesystem related to the latest monthly backup and the daily
backup is a incremental dump of the �lesystem reacted to the latest weekly
backup.

Legato NetWorker
Author : Legato Software
Last stable release : -
License : Proprietary
Web site : http://portal1.legato.com/products/networker/
With over 100.000 server licenses worldwide Legato NetWorker does central-
izing backup and recovery operations across UNIX, Windows, Linux, Open-
VMS, Macintosh and NetWare platforms. Advanced indexing and media
management, cluster support, high speed parallelism, cross-platform tape in-
teroperability, comprehensive NDMP support, backup to disk, tape cloning,
archive, server-less backup, and dynamic drive sharing are among key com-
ponents that Legato Software announce on their website[leg].

Mondo Rescue
Author : Hugo Rabson
Last stable release : August 1st, 2003
License : GPL
Web site : http://www.microwerks.net/ hugo/
Mondo Rescue does backup to tape, CD-R, CD-RW, NFS or a hard disk
partition. Its main function is to create a set of CD's that can be used to
do a complete restore of the system. Mondo Rescue supports the most used
�lesystem on the Linux platform and some others too.

16 Preliminary studies

In addition to full rescue of a system, Mondo Rescue also o�ers additional
functionality, like accidently deleted �les.

MultiCD
Author : Daniel Born
Last stable release : April 4th, 2003
License : GPL
Web site : http://danborn.net/multiCD/
MultiCD can be con�gured to backup your whole or parts of your Linux
system to one or more CD's. MultiCD does no compression on the �les, just
make a CD image of them, and if you want, burns it out to one or more
CD's.

rdi�-backup
Author : Ben Escoto
Last stable release : August 8th, 2003
License : GPL
Web site : http://rdi�-backup.stanford.edu/
rdi�-backup is a Python program that backs up one directory to another.
The target directory ends up as a copy of the source directory, and reverse
di�s are stored together with the backup to ensure that you can recover �les
lost some time ago.
rdi�-backup also handle subdirectories, sym-links, special �les, permissions,
uid/gid ownership and modi�cation times. SSH or rsync can be used to back
up to a remote computer, and only the di�erences are transmitted.

rlbackup - Remote Linked Backup
Author : John C. Bowman
Last stable release : July 29th, 2003
License : GPL
Web site : http://www.math.ualberta.ca/imaging/rlbackup/
Remote Linked Backup does as the name describes, takes backup to a re-
mote location and uses hard linking between the same �les in di�erent backup
directories. Every backup becomes a snapshot, and the snapshots are inde-
pendent of each others. rlbackup uses rsync to do the backup task.

Storebackup
Author : Heinz-Josef Claes
Last stable release : August 30th, 2003
License : GPL
Web site : http://sourceforge.net/projects/storebackup/

3.2 Backup software 17

Storebackup is a backup utility that stores �les on other disks. It includes
several optimizations that reduce the disk space needed and improve perfor-
mance, and uni�es the advantages of traditional full and incremental back-
ups. It includes tools for analyzing backup data and restoring.
The only option on backing up to a remote �le system is to use NFS. Once
archived, �les are accessible by mounting �le system (locally, or via Samba or
NFS). Storebackup also includes a tool for System Administrators to restore
(sub)trees.

3.2.1 Preliminary sorting

In this section the backup systems that not do satisfy the requirement listed
in chapter 3.1.2 will be disquali�ed.
The �rst requirement is that the software had to be distributed with a license
that makes it possible to distribute it together with the Skolelinux CD.
The following software fail the requirement of a satisfying license:

� Arkeia

� Backup Exec

� BRU Backup and Restore Utility

� Burt
Burt has a sort of free license, and it have been discussed on the debian-
legal mailing list, and considered as non-free in a thread[Did99] started
by Paolo Didonè.

� Legato NetWorker

The backup systems that failed due to the license, will not be considered
when the other requirements are considered. This because there may be
some problems with testing some of them without a license.
The second requirement is that the backup system must support the archi-
tecture, the software and the hardware used in Skolelinux. To achieve this
requirement and the third requirement, which is that it must be possible to
place the backup server on another network than the �le server and LTSP
server(s), the backup software used in the backup system must allow a sce-
nario where the �le server only uses the backup server as a remote hard drive.
I.e. the client-software installed on the �le server (possibly also on the LTSP
server(s)) has to take the initiative to each backup session.
The following software fail these requirements:

18 Preliminary studies

� Amanda
Amanda fails at this point because the Amanda backup server is the
component that connects to the client when a backup session is initial-
ized. When the backup server must have the possibility to be placed on
another network than the rest of the Skolelinux network, the request
from the backup server has to go into a network which is NATed (see
the Skolelinux architecture document [Rei02]). This is not impossible
to solve, but nothing that will work out of the box when Skolelinux
does not include a gateway or rules for such gateway.

� BackupPC
BackupPC is designed to take backup of a lot of workstations, includ-
ing laptops that are not continuous connected to the network. Like
Amanda, it is the server part of BackupPC that request the clients
when backup is to be taken, and this does not �t well in a NATed
network.

� Bacula
The Bacula Director service is one of the services running on the backup
server and is the service that request backups from the Bacula �le
services on the clients. Like Amanda, this does not �t well in a NATed
network.

� Dirvish
When using Dirvish the backup server is the host that initializes the
backup session with the clients. Like Amanda, this does not �t well in
a NATed network.

� Hdup
Hdup can be used perfectly to backup to a remote location, but when
it comes to the restore part, you will have to start the restore process
from the remote machine, which will not �t well in a NATed network.

� Storebackup
The way Storebackup stores backup to another host over the network,
is using NFS and when the backup server must have the possibility to
be placed on another network than the rest of the Skolelinux network,
NFS is a bad idea.

The fourth requirement is that the communication between the backup server
and the machines that shall be backed up, must be encrypted. This require-
ment does not exclude any of the backup systems, because it is possible to
transmit almost any stream of data over an SSH connection.
The �fth requirement is also an argument that does not exclude any of the
backup systems reviewed in this project. For all of them, it is possible to
choose the �les you want to back up.

3.2 Backup software 19

The sixth requirement is that uid/gid ownership and privileges must be
stored. None of the remaining backup software has problems with achieving
this.
The seventh requirement is that the software has to store the backup to a
hard disk. The following software fail these requirement:

� afbackup
afbackup is primary designed to back up to a streaming device. af-
backup's documentation says nothing about how to use a hard disk or
a �le on a hard disk as a streaming device, therefore afbackup fails at
this requirement.

The eighth requirement is that the backup system must handle snapshots in
such way that it is possible to restore �les from di�erent points in time. The
following software fail these requirement:

� a�o
a�o is a script that creates cpio-formated archives, and a�o does not
deal with snapshots. a�o is, as the Freshmeat project page [a�] says,
�a�o is best used as an `archive engine' in a backup script�.

� Mondo Rescue
Mondo Rescue is a backup system designed to make it possible to
recover from scratch if necessary. In one way, you can say that Mondo
Rescue can keep di�erent snapshots of your backup on di�erent CD's,
but this is considered a much too time consuming operation, so it is
disquali�ed.

� MultiCD
MultiCD was created to take a full backup of a system to one or more
CD's. It is also possible to choose which �les/directories to backup,
but in the same way as Mondo Rescue, MultiCD is disquali�ed because
of the too time consuming way of restoring �les from di�erent points
of time.

3.2.2 Test: the remaining software

These backup systems have passed all the requirements:

� FauBackup

� rdi�-backup

� rlbackup

20 Preliminary studies

In the rest of the test chapter, each of the backup systems will be tested
against the requirements and some other functionality to see if one of them
point it self out as crystal clear candidate. The requirements checked in the
previous section will not be tested if not one of the backup systems is much
better than the other. There are logs that describes the procedure carried
out for each software system as appendixes to this report. The FauBackup
log is in appendix A, rdi�-backup log is in appendix B and the rlbackup log
is in appendix C.
The computers used to test these backup systems are one Pentium Celeron
450MHz and one Pentium III 1000 MHz both with Debian Stable installed.
The software was not installed using any precompiled packages, but the
tar.gz-�les o�ered on the backup softwares web sites (see the logs for details).

Installation

The �rst thing one notices when doing a software-test is how easy/hard
the software is to install. FauBackup installed smoothly and without any
problems. The installation of rdi�-backup also went very smooth. rlbackup
was a bit more problematic. To get the software compiled, the -ansi-option
for g++ in in the Make�le had to be removed (see appendix C for details).

File ownership and privileges

In a FauBackup- and rlbackup repository the �les and directories keeps its
uid/gid ownership and privileges, while rdi�-backup stores this both in sep-
arate �les and with the �les.
All the backup systems handle soft links and hard links. FauBackup also
handles �les with holes. rdi�-backup and rlbackup does not handle �les
with holes (see logs for details).

Snapshot storage

FauBackup �rst copies the whole directory from the client to the backup
server, and then compares the newest backup to the last backup and then
hard linking of the identical �les. The negative part here is that all �les are
copied at each backup, which leads into a lot of network usage. FauBackup
gives you the opportunity to choose how many daily, weekly, monthly and
yearly backups to keep on the backup server.
rdi�-backup has the last snapshot stored as the primary mirror, and uses
reverse di�-�les to store the di�erences between newer and older �les. rdi�-
backup does not have any functionality to choose the numbers of daily,

3.2 Backup software 21

weekly, monthly or yearly backups to keep, but gives the user the possi-
bility to delete every backup that is older than backup at a speci�ed time.
rlbackup has one directory for each snapshot and hard-links equal �les be-
tween snapshot directories. rlbackup uses rsync to compare �les in the repos-
itory with the fresh �les. rsync calculates deltas for the whole backup set
before it starts transferring information to the backup server. According to
Jonas Smedegaard [Sme03] this can make both the backup server and the
client to crack if the data set is to large.
With rlbackup you can specify how sequentially backups you want to retain.
This option is explained like this in the rlbackup con�guration �le:

The number (≥ 2) of sequential backups to retain. After this
number, retain only every second backup, then every fourth back-
up, and so on, for each successive power of 2 (except for the
necessary intermediate �les).

Hard disk usage

In this test all backup systems were set to backup a home directory every
night. To get more changes to the �les, a copy of Skolelinux CVS-repository
was updated in the home directory before each backup. The home directory
has been growing from about 600MB to about 950MB. After these seven
weeks FauBackup did use 3.2GB, rdi�-backup 1.3GB and rlbackup 2.3G.

Velocity

During each backup session run in this test, the time used was logged to
see the di�erences between the backup systems. The average time elapsed
during FauBackup's sessions was about six minutes, rdi�-backup about four
minutes and rlbackup about three minutes.

Restoring

While none of the FauBackup man-pages have any information on how to
restore at all, most likely this is supposed to be done manually with a tool
like scp, FTP or NFS. rdi�-backup and rlbackup do not have an option
that allows the end-users to restore their own �les (you have to have system
administrator privileges), the only restoring can be done by SA. With all
systems you have the possibility to give the users read-access to the �les in
a secure way via the snfs �lesystem or you can make an additional piece of
software that runs as root and prepares a zip- or tar-�le with the �les the
user requests.

22 Preliminary studies

Debian prepared (packaged)

FauBackup is packaged for Debian, version 0.5-pre1 in the stable archives,
0.5.1 in testing and 0.5.2 in unstable (0.5.2 is the latest release). One advan-
tage for FauBackup is that the developer, Martin Waitz, also is the Debian
Developer responsible for packaging it. There have been some bug �xing
between the 0.5-pre1 and 0.5.2, so if FauBackup is the software chosen, we
want to include backporting the 0.5.2 version to Debian stable as a part of
the project.
rdi�-backup is packaged for Debian, but in the stable archives only version
0.6.0 is present, so if rdi�-backup is chosen as the backup software to use
in this project, the project have to include backporting the newest release
of the software to �t into Debian's stable release. This should not be a big
problem, as the newest release of rdi�-backup easily installed on a Debian
stable computer.
rlbackup is not packaged for Debian at all, so the project has to include
packaging it in case of using it in this project. As there was some problems
with compiling and installing the newest release of rlbackup on a Debian
stable computer and the fact that rlbackup has not been packaged for Debian
at all, there may be more di�cult to package rlbackup than FauBackup or
rdi�-backup for Debian stable.

Propagation

Just to get a little feeling about the size of the systems, this is the re-
sults of searches on the names (FauBackup, rdi�-backup and rlbackup) on
AllTheWeb and Google (the searches was performed October 7th):
AllTheWeb
FauBackup - 1,476 results
VBackup - 868 results
rdi�-backup - 3,554 results
rlbackup - 11 results

Google
FauBackup - 1,880 results
VBackup - 1,010 results
rdi�-backup - 7,400 results
rlbackup - 53 results
These results just shows us that probably rdi�-backup is more in use and
discussed than FauBackup, and rlbackup is not very discussed on public
Internet forum. (We will have in mind that FauBackup was renamed from
VBackup to FauBackup early in 2002.)

3.2 Backup software 23

Documentation

When using a software package, it is important that the documentation
following the package is good. FauBackup's documentation consists of four
man-pages which is quite informative but misses examples. rdi�-backup has
a good documentation page on the web site, including e.g. examples of
usage, FAQ, man-page and more detailed information about rdi�-backup.
The only documentation rlbackup has, is the installation routines which
includes examples on how to take backup and how to recover.

Activity and support

When going to choose a Open Source software package to use in a project like
this, it is positive that the software development team is active in developing
and supporting their product. If they are, you will likely get a more positive
experience when reporting a bug or needing help.
FauBackup has mainly one developer, Martin Waitz (working at Dept. of
Computer Science 3, Friedrich-Alexander University Erlangen). The last six
months two new releases have been announced (from v0.5.1 March 12th to
v.0.5.2 September 2nd). The average number of postings on the mailing list
is 3 per month. The author, Martin Waitz, is one of the most active persons
on the mailing list and almost always responds quickly to questions. The
FauBackup web site is simple, but informative.
rdi�-backup also has mainly one developer, Ben Escoto (graduate at Stan-
ford University). The last six months seven new stable releases have been
announced (from v0.11.4 Mars 15th to v0.12.4 September 13th [Esc03a]).
The average number of postings on the mailing list is 70 per month, and
the number is increasing from about 50 in April to about 120 in September.
The author, Ben Escoto, is one of the most active persons on the mailing list
and almost always responds quickly to questions. The rdi�-backup website
is well organized, informative, and frequently updated.
rlbackup also has mainly one developer, John C. Bowman (professor at Dept.
of Mathematical Sciences, University of Alberta). The last six months two
new releases has been announced (v2.05 May 21 to v2.06 July 29th [Bow03]).
rlbackup does not have a public mailing list. The rlbackup website is quite
informative and was last updated when the v2.06 was released.

3.2.3 Conclusion

The Debian packaging is a very important issue for Skolelinux, as they do not
want to have the package responsibility for more packages than necessary.

24 Preliminary studies

Mixing this point with the installation phase, FauBackup and rdi�-backup
scores almost equal and rlbackup is some steps behind.
With FauBackup, you can decide how many daily, weekly, monthly and
yearly backups to keep, rlbackup gives you the opportunity to specify how
sequentially backups you want to retain (as speci�ed above), and rdi�-backup
does only allow you to delete every backups that are older than a speci�ed
date. This gave FauBackup full score, rlbackup medium score and rdi�-
backup zero score.
But the fact that rlbackup uses rsync, and that rsync, as mentioned above,
can make both the backup server and the client to crash, gives rlbackup
negative score.
The disk usage made rdi�-backup to a winner, before slbackup on a second,
and FauBackup last. There was big di�erence between the three.
When time usage is considered, FauBackup was the slowest, with rdi�-
backup on a second, and slbackup as the fastest. As Faubackup transfers all
the data at each backup session, this was not a surprising result. slbackup
and rdi�-backup scores highest on this one.
When it comes to propagation, activity and support, due to the very active
mailing list, the responsive author, good documentation and frequent releases
rdi�-backup is the backup software that scores absolutely best. FauBackup
and rlbackup scores almost equal, but it is negative for rlbackup that it does
not have a public mailing-list.
All things considered, rdi�-backup is winner backup system in this project.
The main reasons for this is Debian packaging, disk usage, network band-
width usage, documentation, activity, and support.

Chapter 4

Design

This chapter contains the design speci�cation of the system. The �rst part is
a description of the architecture of the system and the last part contains more
detailed descriptions of some parts of the system. This chapter is written
for those who are going to implement the system and those who want to
understand how the system is designed after the implementation is �nished.

4.1 Architecture

First an overview of the system is presented, before the system is split in
four di�erent times of view; con�guration, backup, restore and maintenance.
Two types of diagrams are used in this chapter, a sort of �owchart diagram
and a sort of sequence diagram (not following the standard, but the ideas
are taken from UML sequence diagrams). The �owchart diagram shows the
three di�erent computers in the project as rectangular boxes containing the
storage medias and the processes that are playing vital parts in this project.
The sequence diagrams show the interaction between the SA, the processes
and the storage medias in the di�erent views of time as described above.

4.1.1 Overview

The system contains one �le server, one backup server and one or more LTSP-
server(s). Both the backup server and the LTSP server can be included as a
part of the �le server, but in the rest of this chapter they will be treated as
separate computers. Figure 4.1 is presenting the di�erent computers in the
system with their relevant storage systems and processes running.

26 Design

mail

mail
ssh−
keys

ssh−
keys

ssh−
keys

LDAP−backup

cron

ssh

rdiff−backup

ssh

rdiff−backup

LTSP server

cron

Check system

Check HD space

Backup server

HD

LDAP

HD

HD

ssh

File server

webmin

sshd

rdiff−backup

rdiff−backup

sshd

Figure 4.1: Overview of the system with relevant processes and storage
systems

4.1 Architecture 27

File server

The �le server has mail functionality for use by the other processes that
runs on the server. It also handles the con�guration of the backup system,
the con�guration �les, and the Webmin interface between the SA and the
backup system. There are cron jobs that handles both backup of the LDAP
database, backup of its own �les, and backup of the LTSP servers �les.

Backup server

The backup server also has mail functionality if some of the other processes
that runs on the computer needs to report something to the SA. There are
some cron jobs running to check if the hard disk has enough free space and
checking other parts of the system. A SSH daemon runs so the �le server
is able to connect, and the backup system also starts a rdi�-backup process
that runs in server-mode when the backup session is running.

LTSP server(s)

On the LTSP server the only process that is relevant to the backup system
is the SSH daemon that serves the �le server with SSH connections. The
backup process on the �le server starts a rdi�-backup process in server-mode
on the LTSP server(s) when the backup session is running.

4.1.2 Con�guration

This phase is where the System Administrator, SA, is con�guring the system.
This includes specifying what to back up, when to backup, the SA's mail
address, the maximum age of backups to keep, and handling SSH-keys.
In �gure 4.2 the processes that are relevant to the con�guration phase are
�lled. Figure 4.3 shows the interaction between the processes.
The following list describes the set of arrows in �gure 4.3:

1. The interface between the SA and the system is a Webmin-module.
The Webmin module is described in further detail in chapter 4.3.

2. The Webmin module stores its con�guration in cron jobs and other
�les on the hard disk.

3. Webmin also have functionality to handle the SSH keys used by the
backup process to connect to the backup server and LTSP server(s).

4. SSH is used by Webmin to send the public part of the SSH key to the
backup server and the LTSP server(s).

28 Design

mail

mail
ssh−
keys

ssh−
keys

ssh−
keys

LDAP−backup

cron

ssh

rdiff−backup

ssh

rdiff−backup

LTSP server

cron

Check system

Check HD space

Backup server

HD

LDAP

HD

HD

ssh

File server

webmin

sshd

rdiff−backup

rdiff−backup

sshd

Figure 4.2: Overview of the system with the processes that are relevant to
the con�guration phase �lled

ssh−
keys

HDLDAP

rdiff−
backup ssh−

keys

rdiff−
backup ssh−

keys

sshd

HD

LTSP server

sshd

HD

Backup serverSA

sshwebmin

File server

1

2

3

4

5

Figure 4.3: Interaction between the active processes in the con�guration
phase

4.1 Architecture 29

5. SSH is also used by Webmin to test if the connection between the
backup server and the LTSP server(s) is working properly and to verify
that rdi�-backup is installed and working on the remote computers and
that it has the same version on all computers.

4.1.3 Backup

This phase is when the backup is running and store �les from the �le server
and LTSP server(s) on the backup server. Figure 4.4 shows which processes
that are active in the backup process and �gure 4.5 illustrates the interactions
between the processes.

mail
ssh−
keys

ssh−
keys

ssh−
keys

ssh

rdiff−backup

LTSP server

cron

Check system

Check HD space

Backup server

HD

LDAP

HD

HD

ssh

File server

webmin

sshd

rdiff−backup

rdiff−backup

sshdmail

ssh

rdiff−backup

LDAP−backup

cron

Figure 4.4: Overview of the system with the processes that are relevant to
the backup phase �lled

The following list describes the set of arrows in �gure 4.5:

1. A cron job that stores the LDAP database in a �le on the hard disk.
If a failure appears, the cron job will send an email to the SA.

2. A cron job that takes backup of speci�ed �les and directories on the
�le server. rdi�-backup uses SSH to send data over the network to
the backup server. Because of the SSH keys that are generated in the
installation / con�guration phase, no passwords are needed.

3. Like 2, but it is the LTSP server(s) and not the �le server that is backed
up.

30 Design

rd
if

f−
ba

ck
up

L
D

A
P−

ba
ck

up
ss

h−
ke

ys

rd
if

f−
ba

ck
up

ss
h−

ke
ys

rd
if

f−
ba

ck
up

ss
h−

ke
ys

SA

m
ai

l
cr

on
ss

h

H
D

L
D

A
P

ss
hd

H
D

L
T

SP
 s

er
ve

r

1

ss
hd

H
D

B
ac

ku
p

se
rv

er

2 3

Fi
le

 s
er

ve
r

Figure 4.5: Interaction between the active processes in the backup phase

4.1 Architecture 31

mail

mail
ssh−
keys

ssh−
keys

ssh−
keys

LDAP−backup

ssh

rdiff−backup LTSP server

cron

Check system

Check HD space

Backup server

HD

LDAP

HD

HD

ssh

File server

cron

webmin

rdiff−backup

ssh

rdiff−backup

sshd

rdiff−backup

sshd

Figure 4.6: Overview of the system with the processes that are relevant to
the restore phase �lled

4.1.4 Restore

This is the phase where the SA restores �les from backup. Figure 4.6 shows
which processes that are active in the restore phase and �gure 4.7 illustrates
the interaction between the processes.
The following list describes the set of arrows in �gure 4.7:

1. The restore is initiated via the Webmin module, and a rdi�-backup
process is started to restore �les from the backup server to the �le
server. Here, SSH is also used to send data over the network, and the
SSH keys prevent any passwords handling.

2. The same as 1, but the �les are restored to the LTSP server(s) instead
of the �le server.

4.1.5 Maintenance

In this phase the backup server is checking that everything is working prop-
erly. If anything goes wrong, the system will warn the SA through an email
describing the problem(s).
Figure 4.8 shows which processes that are active in the maintenance phase
and �gure 4.9 illustrates the interaction between the processes. The following
list describes the set of arrows in �gure 4.9:

32 Design

rdiff−
backup ssh−

keys

rdiff−
backup ssh−

keys

rdiff−
backup ssh−

keys

SA

webmin

File server

ssh

2

1

HDLDAP

sshd

HD

LTSP server

sshd

HD

Backup server

Figure 4.7: Interaction between the active processes in the restore phase

mail

ssh−
keys

ssh−
keys

ssh−
keys

LDAP−backup

cron

ssh

rdiff−backup

ssh

rdiff−backup

LTSP server

cron

Check system

Check HD space

Backup server

HD

LDAP

HD

HD

ssh

File server

webmin

sshd

rdiff−backup

rdiff−backup

sshd

mail

Figure 4.8: Overview of the system with the processes that are relevant to
the maintenance phase �lled

4.2 Software packages 33

ssh−
keys

ssh−
keys

SA

webmin

File server

sshd

1

Backup server

2

3

ssh

HDLDAP

mail cron Check

HD

Check
HD space system

Figure 4.9: Interaction between the active processes in the maintenance
phase

1. It is possible to manually delete old backups from the Webmin inter-
face.

2. One important thing to check on a backup server is if the disk is getting
�lled up, so the free space on the hard drive is crossing a speci�ed limit,
a mail will be sent to the SA with a warning.

3. Other system preferences can also be monitored and send warnings to
the SA by mail if anything is wrong.

4.2 Software packages

This section describe the software structure in this project. There will be
written several pieces of software, which will be packaged in di�erent software
packages:

� slbackup
This package contains the con�guration �le, the script that starts the
backup session, and the cron job for running rdi�-backup once a night.

� webmin-slbackup
This package contains the Webmin module that the SA uses to con-
�gure slbackup, restore �les/directories, do some manual maintenance,
and con�gure the SSH keys.

34 Design

� slapd-backup
This package contains the con�guration that sets up a replicating
LDAP server and a cron job that dumps this database to a �le once a
day.

4.3 Webmin

The con�guration interface is to be written as a Webmin module. The
Webmin module for the backup system is called webmin-slbackup and has �ve
main sections:

� General
This section contains an introduction to the Webmin module and some
status information about the backup system.

� Backup details
This section is where the user specify all details about the backup
con�guration.

� Restore
This is the section where the user can restore �les and directories.
There are two di�erent option; full restore and restore one �le or di-
rectory.

� Maintenance
In this section the user can specify to delete backups that are older
than a speci�ed date.

� SSH keys
This section is handling the SSH keys on the computers in the con�g-
uration.

4.3.1 General

The General page contains an introduction to the Webmin module and some
statistics about the backup system. In �gure 4.10, we can see what the
General page look like.

4.3 Webmin 35

Figure 4.10: Snapshot of the �General� page

4.3.2 Backup details

The Backup details page contains the con�guration of the backup process.
The main window of this section is shown in �gure 4.11. On the Backup
details page the following actions are supported:

� specify when the backup session is started (assumed to be once a day)
� con�gure clients
� add clients
� delete clients
� con�gure backup server

When a user change the time of day that the backup session shall start, he
will be sent back to the �Backup details� page and be informed on the top
of the page that the time has been changed.
When a user wants to con�gure a client he only has to click the con�gure
link, and a con�guration page will be shown as in �gure 4.12.
When a user adds a client, he will be sent to a page where he can con�gure
the client where the �les/directories that is to be backed up on the client
can be con�gured. This page is shown in �gure 4.13.

36 Design

Figure 4.11: Snapshot of the �Backup details� page

4.3 Webmin 37

Figure 4.12: Snapshot of the �Con�gure client� page

When a user deletes a client, he will be asked to con�rm the deletion as
shown in �gure 4.14. When the user press the �Delete�-button he will be
sent back to the �Backup details� page (�gure 4.11) and see a message that
veri�es that the deletion is successfully completed.
If a user chooses to con�gure the backup server, he will be sent to the con�g-
uration page shown in �gure 4.15. When the user press the �Submit changes�
he will be sent back to the same page with verify messages on the changes
made.

38 Design

Figure 4.13: Snapshot of the �Add client� page

Figure 4.14: Snapshot of the �Delete client� page

4.3 Webmin 39

Figure 4.15: Snapshot of the �Server con�guration� page

4.3.3 Restore

The restore section is, as the name says, where the user can restore �les from
the backup server to the system. On the Restore main page, the user has
two options per computer in the backup con�guration as seen in �gure 4.16:

� choose �les/directories
� full restore

If the user chooses to restore just one �le or directory, the page shown in
�gure 4.17 comes up. On this page the user must type in the �le/directory
he wants to restore. When the user presses the �Choose �le/directory� the
page shown in �gure 4.18 is shown.
Also if the user chooses to perform a full restore the page shown in �gure 4.18
comes up. On this page the user can choose which snapshot he wants to
restore from (displayed as dates) and which directory the restore shall be
restored to.
When the user now presses the �Execute restore� button, a page like the one
in �gure 4.19 will be shown. On this page the user is presented with the
details from the execution process, with a log from the backup system at the
bottom.

40 Design

Figure 4.16: Snapshot of the �Restore� main page

Figure 4.17: Snapshot of the �Choose �les/directories� page

4.3 Webmin 41

Figure 4.18: Snapshot of the �Restore details� page

42 Design

Figure 4.19: Snapshot of the �Restore results� page

4.3.4 Maintenance

In this section the user can delete old snapshots from the backup server. The
reason to do this is to free space on the backup servers hard disk. The main
window for the �Maintenance� is shown in �gure 4.20.
When the user chooses which client he wants to delete snapshots from, the
page shown in �gure 4.21. Here the user must choose which snapshots to
delete (every snapshot older that the one that is chosen will be deleted).
When the user presses the �Delete� button, a con�rm page comes up as
shown in �gure 4.22. When the user con�rms that he wants to delete, the
page in �gure 4.20 shows up with a veri�cation that the snapshot(s) has been
deleted.

4.3 Webmin 43

Figure 4.20: Snapshot of the �Maintenance� page

Figure 4.21: Snapshot of the �Maintenance - delete� page

44 Design

Figure 4.22: Snapshot of the �Maintenance - delete - con�rm� page

4.3.5 SSH keys

In this section the user can manage the SSH keys on the computers in the
current con�guration. For the system to be satis�ed with the SSH keys,
there must exist a private-/public key pair on the Skolelinux tjener, and the
public part of that keys must exist on the backup server and every extern
client. The main page is shown in �gure 4.23.
If the user either adds, deletes, or recreates the keys for a computer, a con�r-
mation web page as shown in �gure 4.24 will be displayed. If the requested
action requires a password, a simple web form will ask for this.

4.4 Backup server

As explained earlier, the backup server is assumed to be an external com-
puter, but shall also be designed in a way that it can be a part of the
Skolelinux server. In this section we assume that it is an external computer
if nothing else is written.
On the backup server the following software packages shall be installed in
addition to a minimal installation of the system:

� IP-tables

� Nagios client

4.4 Backup server 45

Figure 4.23: Snapshot of the �SSH keys� page

� rdi�-backup

� SSH

The operating system installed on the backup server shall be an adjusted
version of one of the Skolelinux pro�les. All unnecessary software packages
shall be uninstalled, and the above mentioned software shall be installed and
properly con�gured. The hard disk on the backup server will be divided into
two logical parts. One will store the operating system and the other will be
used to store backup data. The part storing the backup data will be created
as a LVM-partition and preferably mounted on /skole/backup. The advantage
of using LVM is that the partition easily can be enlarged. It is also possible
to add an additional hard disk and add its space to the LVM-partition.
The IP-tables package, which is �rewall software, shall be set up in a way
where no other computers than the Skolelinux server will be permitted to
log in, send/receive �les and monitor the backup server. This is to prevent
attacks from unwanted computers.
Nagios is installed to monitor the backup server. Parameters that shall be
monitored are backup errors, backup consistency, disk space, and that the
SSH server is running. A Nagios plugin for slbackup is needed to monitor
backup errors and backup consistency.

46 Design

Figure 4.24: Snapshot of the �SSH keys - con�rm� page

rdi�-backup has to be installed if the backup service shall work. When rdi�-
backup uses an external computer for storing data, a rdi�-backup process
will be started on the external computer in server-mode.
SSH must be installed because rdi�-backup uses SSH to transfer data over
the network. SSH will also provide security when key pairs are used for
authentication.

4.5 LDAP backup

Backing up the LDAP database is important to Skolelinux, as all user data
is stored in it. To make a good backup copy of the database, you will have
to stop the LDAP database engine (slapd), dump the database into a ldif
formatted �le and start the LDAP database engine.
Due to the problems described by Rune Nordbøe Skillingstad in [Ski03], the
best solution would be to start an additional slapd process, from now called
slurpd that replicates the main LDAP database. To do backups, we now
have to stop slurpd, dump the slurpd LDAP database, and start the slurpd-
process. While this is done, all other processes can still use the main LDAP
database, there will not be unnecessary out-of-service time, and we will omit
the problems with other programs crashing due to the stopped slapd-process.
Figure 4.25 shows this process in more detail. In phase one, the system
is in normal state with processes using information in the LDAP database
thru the slapd-process and the slurpd-process replicating the slapd-process. In
phase two, the LDAP-backup job has stopped the slurpd-process and runs

4.6 Security 47

auth.
userother

processes
LDAP−
backup

HDslurpdslapd

2

3

1

stop

start

File server

Figure 4.25: Interaction between the two slapd-processes and other parts of
the system

slapcat to dump data info a ldif-formatted �le on the hard drive, this at the
same time as normal processes use information from the LDAP database
thru the slapd-process. In phase three, the system is back in normal state,
like phase one.

4.6 Security

This backup system assumes that the backup server is a separate computer
which can be placed on another location than the other Skolelinux servers. If
the backup server is a separate computer, there should be restricted physical
access to the backup server. No physical security like encrypted �le systems
have been considered due to shortage of time in the project.
When it comes to software security, the backup server will be an additional
Skolelinux server for the system administrator to keep secure. How to do
this is covered in the �IKT-driftshåndbok for Skolelinux� [VB03].

Chapter 5

Implementation

This implementation chapter will �rst have a section about one design change
Skolelinux requested after the design was �nished. The rest of the chapter
will describe the software written, which packages that is released and the
changes made to the Skolelinux CD to implement the backup solution.
As the backup system does not depend upon the package slapd-backup, this
package will not be implemented due to shortage of time.

5.1 Design change

The Skolelinux distribution is built with a speci�c architecture in mind. This
architecture is speci�ed in [Rei02]. The architecture contains mainly of two
types of servers, �le server and LTSP server. The LTSP server(s) is the
terminal server for a number of thin clients and the �le server provides the
LTSP server(s) with services like DNS, email, �le sharing, printer server, web
proxy, web server, and user authorization. Skolelinux is designed to make
it possible to extract these services and place them on external computers
if needed (often due to capacity problems). Skolelinux wants to develop a
common way to extract these services, but this is still on the planning stage.
The backup service is similar to the other services supported by the Skolelinux
distribution. Skolelinux wants the backup service to be extracted in the same
way as the other services when the common procedure for extracting services
is developed. It would be irrelevant and counterproductive to build an own
distribution around the backup service, when Skolelinux nevertheless will do
this in another way when the common procedure is developed. This design
change was decided by Skolelinux about three weeks before the deadline of
this project.
Skolelinux are aware of the following disadvantages when not placing the
backup service on an external computer, but still wants to wait with the

50 Implementation

extraction of the backup service:

� Computer failure
If the backup data is placed on the same computer as the �les/direc-
tories that shall be backed up, the backup will have no value if the
computer fails (eg. disk crash).

� Environmental disaster
Disaster like �re, �ooding, and theft will strike both the backup and
the live system if the data is stored on the same computer, even in the
same room or building.

Chapter 4 describes the design Skolelinux actually wants for a backup so-
lution. But because of the yet unimplemented common solution to extract
services, they want the backup server implemented on the Skolelinux �le
server. But, this implementation shall make it easy to extract the backup
service to an external computer, but as default it shall be located on the
Skolelinux �le server.

5.2 Programming language

The web interface for the backup system will be implemented as a Webmin
module, because most of the con�guration interfaces in Skolelinux already
are Webmin modules. When Webmin, and most of the Webmin modules are
written in Perl, it will be natural that the Webmin module for the backup
system also is written in Perl.
In addition to the cron job on the Skolelinux �le server that will contain the
information about when the backup session is started, a con�guration �le
that contains information about the backup server and the client(s) is needed.
There is a very good Perl module, Con�g::General, that handles con�guration
�les very well. It is natural to also write the rest of the software in Perl,
so that the backup project does not become a soup of mixed programming
languages. Another possibility is to write everything in Perl, is that it is
possible to share some code between di�erent pieces of software.

5.3 Backup software

The �rst phase of the implementation is to rebuild a new release of rdi�-
backup to a Debian stable package. This also result in rebuilding the librsync
package to Debian stable. There are two possible techniques to use when
rebuilding a package for the stable release of Debian.

5.4 Package: slbackup 51

1. Take the fresh sources, and build a Debian package from the bottom
up. Here it is important to �nd all the dependencies, or the package
will fail to run on systems missing these dependencies.

2. If the version of the package from the unstable package archive is new
enough, download this source package, check that the package depen-
dencies are met in Debian stable, ful�l the build dependencies, and try
to rebuild the package.

After trying both methods, Petter Reinholdtsen recommended technique
two, because the packages already have been tested by lots of people and
it will be easier when Skolelinux and Debian releases a new stable release
(the packages would already be there).

5.3.1 librsync

The version of librsync used is 0.9.6. To rebuild librsync, build dependencies
to autoconf and automake1.7 was removed as they were not used in the current
version of the package. After removing these build dependencies the package
successfully build in Debian stable.

5.3.2 rdi�-backup

The version of rdi�-backup used is 0.12.5. The only dependency problem
when rebuilding rdi�-backup was python2.3, and when rdi�-backup really only
depends on python2.2, the package was just changed to use and depend on
python2.2 instead of python2.3. After this change, rdi�-backup also rebuild
successfully in Debian stable.

5.4 Package: slbackup

The package slbackup contains a standard con�guration �le, a Perl module
which contains con�guration �le functionality, a cron job that starts the
backup session once a day, and the backup session script to be run by cron
every day to perform backups as the con�guration �le describes.
The con�guration �le was created so the Perl module Con�g::General could
read from and write to it. The con�guration �le is placed in /etc/slback-
up/slbackup.conf and for a standard Skolelinux �le server con�guration it will
be equivalent with the one in appendix E.1. The reason for choosing a Con-
�g::General format for the con�guration �le, is that it will be an easy and
common way for all software that is going to read from and/or write to the
�le.

52 Implementation

The Perl module is located in /usr/share/perl5/SLBackup.pm and provides
functionality for reading and writing data to and from the con�guration �le.
The con�guration handling uses the Perl module Con�g::General and has
a subroutine that reads the con�guration �le and returns a hash with the
con�guration, and a subroutine that writes the hash back to the con�guration
�le. A copy of the modules is in appendix E.2.
By default, the cron job will run the backup script as the root-user each night
at 1AM. The cron job will be located in /etc/cron.d/slbackup. A copy of the
�le is in appendix E.3.
The script that executes the rdi�-backup process reads the con�guration �le
and parses it. First the script deletes all backups older than the number of
days speci�ed in the con�guration �le (default is set to six months). After
the deletion the script builds one command string for each host to back up.
While building this string, the script is testing that the con�guration �le
provides enough information about the server and clients if some of these are
external computers. These tests are valid hostname/IP-address, username,
working SSH-connection, and right version of rdi�-backup. This string will be
executed, and status and error messages from the script and extended output
from rdi�-backup is logged to /var/log/slbackup/slbackup.log. The format of each
line in this log �le is �<date/time> - <logmessage>�. A copy of the script
is in appendix E.4.
The Debian package, which provides the installation routine of this package,
also set up logrotate to rotate the /var/log/slbackup/slbackup.log monthly.
The complete source code for this package is located on the CD following
this report (cvs/alioth/slbackup/).

5.5 Package: webmin-slbackup

The package webmin-slbackup is a graphical front-end to the con�guration �le
(/etc/slbackup/slbackup.conf), restore functionality, maintenance functionality,
and the con�guration of SSH keys. The Webmin module is described in
detail in chapter 4.3.
To handle a Webmin module with this size, the Perl modules CGI::Application
[Erl] and HTML::Template have been used. CGI::Application provides a frame-
work for building reusable Web-applications and HTML::Template provides a
way of separating the HTML-code from the Perl code. HTML-templates
been made for each Web page, and all text strings printed is fetched from
an own �le with strings.
The most important �les in this package is the Perl module WebminSL-
Backup.pm, a lot of HTML templates, and the �les containing all the text
strings used in the Webmin module, one for each language.

5.6 Implementation on the Skolelinux CD 53

WebminSLBackup.pm contains one subroutine for each web page displayed
to the user and some common subroutines used to create several pages.
WebminSLBackup.pm also uses the subroutines provided by the Perl module
SLBackup.pm from the slbackup package.
To provide the HTML templates with the strings from the language �les, a
subroutine written by Andreas Schuldei in connection with the Skolelinux
package webmin-ldap-skolelinux, is used.
The information about the latest backup sessions is fetched from the log-�le
/var/log/slbackup/slbackup.log.
The data provided in connection with restore pages, is provided by rdi�-
backup and its options speci�ed by the man page[Esc03b].
To test if the SSH connections work without providing passwords, a SSH
session is started with the option �-o PasswordAuthentication=no� and checks
that �echo -n 1� actually returns 1 and not an error message.
To handle the SSH connection that requires password interaction, the Perl
module Expect.pm[Gie] was used.
The complete source code for this package is located on the CD following
this report (cvs/alioth/webmin-slbackup/).

5.5.1 libexpect-perl

The version of libexpect-perl located in Debian stable (version 1.11) did not
work properly, so the package was rebuild with sources from Debian unstable
(version 1.15). It was not necessary to do any changes to the package to make
it build in Debian stable.

5.6 Implementation on the Skolelinux CD

The implementation of the backup software on the Skolelinux CD is divided
into three parts.

1. Set up a LVM partition and mount this to /skole/backup. The rules for
the size of this partition will specify the minimum and maximum size
for the partition.
The �les containing these rules are called �Main-Server.table� and �Main-
Server+Thin-Client-Server.table� for the Skolelinux �le server and com-
bined �le server and LTSP server respectively. These �les are located
in the Skolelinux CVS tree (src/base-con�g-skolelinux/autopartkit/).
A complete copy of the Skolelinux CVS tree is on the CD following
this report (cvs/skolelinux/).

54 Implementation

2. Edit the list of packages that shall be included on the CD and add
slbackup and webmin-slbackup. The CD-builder script handles depen-
dencies.
The package lists are called �task-skolelinux-server.txt� and �task-skole-
linux-ltsp.txt� for the Skolelinux �le server and LTSP server respec-
tively. These �les are located in the Skolelinux CVS tree (src/task-
skolelinux/lists/). A complete copy of the Skolelinux CVS tree is on
the CD following this report (cvs/skolelinux/).

3. Modify the slbackup Debian package to use Debconf in the con�gura-
tion phase. Debconf is a con�guration management system for Debian
packages. When making a package using Debconf for con�guration, a
lot of templates are used. Each template re�ects a variable that will
be used for instance in a con�guration �le. All Debconf templates has
a default value that will be used if the user does not want to be asked
questions during the installation.
The Debconf template-�le and the other installation �les, is located
in slbackup's CVS tree on Alioth (slbackup/debian/). A complete copy
of slbackup's CVS tree on Alioth is on the CD following this report
(cvs/alioth/).
The great advantage of using Debconf in this case, is that a general
scenario (not Skolelinux) the con�guration scripts asks the user or uses
the default-values which is valid for a Debian installation, and in the
Skolelinux installation all the templates have prede�ned answers (spec-
i�ed in the Skolelinux installation). So for instance, the locations to
back up in a Skolelinux installation is de�ned to be:

� /etc
� /skole/tjener/home0
� /var/backups

for a Skolelinux �le server, and
� /etc
� /skole/tjener/home0
� /opt/ltsp/i386/etc
� /var/backups

for a combined Skolelinux �le server and LTSP server.

When these three parts work properly, the backup solution should be in-
stalled and work �out of the box�.

Chapter 6

Installation

The backup system have been installed and tested on four systems, one
Debian stable environment, three small Skolelinux environments, and some
fresh Skolelinux installations just to test the installation procedure after
implementing the solution on the Skolelinux CD.

6.1 Debian stable environment

In this environment, rdi�-backup has been tested for nearly two months and
slbackup has been tested for two weeks. The �les that have been backed up
is one home directory including an updated version of the Skolelinux CVS
to insure that �les are heavily changed. The only errors that have occurred
during the test are rdi�-backup-speci�c:
SpecialFileError <filename> Socket error: AF_UNIX path too long
This error does not in�uence of the rest of the backup, and a restore does
not fail. In this case the �le that caused the SpecialFileError was a �le
that was recreated if missing, and therefore not an important �le to lose.
Beside this the slbackup software has not run into any errors. When using
the Webmin interface, a lot of bugs has been discovered and �xed.
In this environment an external tester did a total review of the entire Web-
min interface, and had a lot of comments. Most of them were implemented.
During this evaluation session more bugs in the Webmin interface were dis-
covered, and �xed.

6.2 Skolelinux environment

The �rst Skolelinux environment that slbackup were tested, was at NVG (a
club for students and employees at NTNU). slbackup has been used to back

56 Installation

up con�guration �les on this installation. Except for some bugs discovered
in the Webmin interface, that have been �xed, no problems have surfaced.
The second Skolelinux installation where slbackup has been tested, was a test
installation used at the Skolelinux gathering in Ulsrud comprehensive school
in Oslo 14th to 16th of November. On this installation another external test
person reviewed the Webmin interface, and found some bugs that were �xed.
The third Skolelinux installation that tested slbackup was the test network
of the system administrator at Holmlia comprehensive school. This test was
carried out one week before the project deadline, but resulted in some bugs
�xed, and positive comments about the product.
All the external testers were satis�ed with the Webmin interface, but had
some ideas that are added to a wish-list for implementation in future releases
of the product.

6.3 Installation tests

About 5�10 test installations were done to test that the installation pro-
cedure is working properly. One of the problems was to �nd free space
on the Skolelinux CD (Skolelinux shall be install able from only one CD).
This problem solved it self, when the CD size was increased from 650MB to
700MB.

Chapter 7

Conclusion

The project is �nished and Skolelinux have a working backup solution. In
this chapter we will look at the positive results, the present solution with
the requirement speci�cation in mind, discuss what could have been done
di�erent during the project, sum up what can be done with the product in
the future, and discuss the working method used in a Skolelinux project.

7.1 What has been achieved?

This projects main goal is reached, namely to put together a working backup
solution for the Skolelinux distribution that works �out of the box� without
any needs for the SA to do any initial con�guration. The project has suc-
ceeded when all things are considered. A short summary of the achievements
in the project is presented in the list below.

� A requirement speci�cation is put together and adopted by Skolelinux.

� Backup software was found and evaluated, and �nally rdi�-backup was
chosen (see chapter 3 for details).

� A design for the system and how to use it was made up.

� The design was implemented; necessary software packages was rebuild
for Skolelinux, and two software packages was written (slbackup and
webmin-slbackup).

� The system was installed and tested.

� The system was included on the Skolelinux CD.

58 Conclusion

The project has ended up with a working backup solution that will be used
in the Skolelinux distribution as from the next pre-release of the CD (number
43).
Things I have learnt from the project and things I interpret as positive during
the project are listed below.

� The communication channels used in Skolelinux (IRC and email-lists)
have been frequently used as requested by Skolelinux, and I have good
experience with asking questions and discussing challenges I have met.

� At the time this project �nishes, the backup solution will solve prob-
lems like when someone deletes �les/directories, and when someone
changes �les, but wants the original back. When Skolelinux develops a
common way of extracting services, the backup solution will automat-
ically cover problems like disk crash, �re, �ooding, and so on.

� I have submitted a bug report on the backup software the product in
this project is based on, rdi�-backup, and within a week, the author
of rdi�-backup �xed the bug and released a new version with the �x
included.

7.2 Achieving the requirement speci�cation

The product that has been developed have most of the requested features
that are requested in the requirement speci�cation. The features that are
missing or partly missing are listed below. The sentences printed in bold are
obtained from the requirement speci�cation (see chapter 2).

� The backup service shall in case of any failure send a failure
report to the SA
No mail is sent to the SA and no information is presented by the
Webmin module if the backup fails. Skolelinux are going to use Nagios
to monitor their services, and a Nagios module for slbackup should have
been made. More information about this is in chapter 7.4.

� The documentation shall contain guidelines to planning how
much capacity that is needed for the service to work properly.
As the implementation does not include a separate backup server the
documentation does not contain any information about scaling one,
but the documentation contain guidelines to planning how much disk
capacity one would need.

� Take daily backup of speci�ed directories/�les to a hard drive
on an external backup server (...)

7.2 Achieving the requirement speci�cation 59

Skolelinux decided three weeks before the project deadline that they
did not want to have the backups stored on an external backup server,
but on the Skolelinux main server in a default installation. This is
because, as explained in chapter 5.1, Skolelinux wants a common way
to extract services, but this is not implemented yet.
The implemented backup solution supports storing the backups on an
external computer, but in the Skolelinux installation the default is to
back up the Skolelinux main server to an own partition on the same
computer.

� The backup server is installed on a separate computer and
shall only require input from the SA about which computers
(IP-addresses) it shall receive backup from, which computer
it shall use as syslog-server (if any), and the email-address to
the SA.
This item was omitted as common way to extract services (including
backup server) from the Skolelinux main server has been implemented
yet.

Most of the missing features are missing because of the decision to exclude
a separate backup server and the rest was not prioritized.
The product has some desired features in the requirement speci�cation that
are missing in the developed product:

� Archives are stored encrypted on the backup server (...)
This has not been implemented. Partly because there has not been
developed a backup server, and partly because it would have been to
complex to implement this on the Skolelinux main server (that per
default stores the backup).

� The end user, pupils, and teachers shall be able to restore
their personal �les (...)
The restore functionality provided by the Webmin interface is minimal,
and does not include support for user restore. This has been suggested
as a student project.

� Webmin interface: check the quality of the backup �les (...)
There has not been any implemented functionality in the Webmin in-
terface for this desired feature.

� Webmin interface: de�ne mail and SMS recipients in case of
trouble and errors
The monitor software in Skolelinux shall be Nagios, but the monitor
solution is not �nished yet, so a temporary solution is to log everything
into /var/log/slbackup/slbackup.log.

60 Conclusion

� Webmin interface: provide browser facilities to restore �les
from backup
A minimal but working restore functionality was preferred over a re-
store functionality with a lot of facilities, but to provide a new restore
interface with the browser facility among others is suggested as a new
student project.

� Webmin interface: syslog monitoring
Logs are written to a separate �le (/var/log/slbackup/slbackup.log) and
the Webmin interface uses it to �nd out when the last backup session
was �nished. A more detailed statistic page in the Webmin interface
is suggested as an item in the �Further work� chapter.

The requirement speci�cation required one Users Manual and one System
Administrators manual. No restore interface for the end users of the system
is created, and the manuals have been merged into one Users Manual that is
meant for the System Administrators. The Users Manual is in appendix D.

7.3 What could have been done di�erent?

If the project was to be repeated, the issues that would have been modi�ed
are:

� More than one project participant
There are a lot of positive e�ects by being more than one person doing
a project.
� In the design phase, two people will give you two di�erent views
of the system, and maybe give a better design.

� If a problem occur, two brains think better than one.
� It is more motivating being more than one person working alone,
and if one of the members have a bad day, the other(s) are there
to motivate and push in the right direction.

� In the most cases, more work would be done.
� More discussion with the customer
One experienced that more detailed discussion with the customer when
doing the design, could have saved some work hours. The best ex-
ample in this project, is that three weeks before the project dead-
line, Skolelinux decided to not implement a backup server, but use
the Skolelinux main server instead. Of course, this reduce saved the
project member for some time, but I think if this part of the design
had been discussed with the customer at an earlier moment of time, it
could have been saving even more time.

7.4 Further work 61

� Longer period of time for testing and bug �xing
This project had a product for testing ready about a month before
the project deadline. A month is not enough to test a backup system
extensively. A longer period for testing and bug �xing would have been
a target to reach for in another project.

� Better planning of actions that relied on other parties
Early in the project period I talked to SA's on some schools and agreed
with them to test the backup solution when it was ready. The problem
was that when there was less than a month to the project deadline, it
was hard to make a test �t into the SA's schedules. The lesson to learn
from this, is that if some actions relies on other parties than the project
group, it is important to make agreements including a date or week
number for the planned happening (in this case the test installations).

The last missing feature with the backup solution, is a drawback with using
rdi�-backup as the backup software. rdi�-backup has no functionality that
makes it possible to store daily backups for a speci�ed amount of time,
weekly backups for another speci�ed amount of time, and monthly backups
for yet another speci�ed amount of time. This con�icts with �gure 2.2 in
chapter 2, which gives an estimate of how long to keep the backups. slbackup
is therefore, after discussions with Skolelinux, storing daily backups for six
months.

7.4 Further work

Each of the software packages slbackup and webmin-slbackup contains a TODO
�le including features to add and trivial bugs that users have requested
during this project. The most important feature are

� add installation procedure for other systems than Debian
� check that there exists any backups before trying to delete some (will
prevent the error messages in the log-�le)

� make a command line client which provides restore functionality, idea:
https://init.linpro.no/pipermail/skolelinux.no/devel/2003-August/
000577.html

for slbackup, and

� add one more step before executing restore (with checking of �les, and
reporting to the user what actually will happen)

62 Conclusion

� check if a SSH-public key is needed when showing �Con�gure client�
page, and print a warning and a �link� to the SSH keys-page

� new page with some statistics from the backups taken

� add browsing functionality in the restore section

for webmin-slbackup.
A goal for these software packages is to push them into the Debian unstable
package archive. The bene�ts of doing this, is that in the future the packages
hopefully will be a part of Debian's stable distribution, and also Skolelinux.
The reason Skolelinux wants their packages to be a part of Debian, is that
they (Skolelinux) does not have to handle security updates of the packages.
In addition to the two software packages, Skolelinux should make a common
way to extract services from the Skolelinux main server to separate comput-
ers. This is important to the backup system, because the value of backups
will increase a lot when extracting the backups to a separate computers
(discussed in detail in chapter 5.1).
One missing feature is monitoring the backup server. The main reason for
the shortcoming on this area, is that no backup server was designed. In any
case monitoring is an important feature of a backup system, and the three
main conditions to monitor is backup failures, backup consistency and disk
space. As Skolelinux is going to use Nagios as the main monitoring system,
an own Nagios plugin that at least monitored the three conditions mentioned
above should have been developed for slbackup.
The features provided by the products that are developed in this projects,
have been reported as missing features of rdi�-backup on the rdi�-backup-
users email-list. Some of the functionality in this project could have been
merged into rdi�-backup.
When using and designing a system based on rdi�-backup, one notices that
one important feature is missing. The way rdi�-backup handle incremental
backups today is that it maintains a copy of all �les like a fresh snapshot
and stores the reverse di�erences in separate �les called reverse di�-�les. The
problem is that rdi�-backup does not have a function to merge these reverse
di�-�les, and the backup repository stores all daily di�erences for as long as
you want to keep backups (default is six months for a standard Skolelinux
installation). It could have been useful to be able to merge these reverse
di�-�les so one would not need to store daily, but weekly when the backups
were older than a speci�ed amount of time (default could be one month).
This will need an additional software module in either slbackup or slbackup.
Skolelinux Backup only handles UNIX/Linux computers in the network, and
most schools have some computers with Windows installed on them. One

7.5 Releasing slbackup as an Open Source project 63

approach to cover these too, would have been if slbackup searched for SMB
shares available on the network and presented these in the web interface, so
that the SA would have the possibility to choose which of them he wanted
to back up. slbackup could have mounted these SMB shares and backed them
up each night as a part of the daily backup session.
For most schools backup to hard disks are the best solution. Some schools
or other organizations using slbackup may want to use tape as the backup
media. A slbackup module that handled backup to tape is a good idea. The
system administrators would have the possibility to choose the backup media
to use in the web interface. Another approach is to use backup-to-disk for
daily backups and backup-to-tape for archive backups.
Another idea for the backup media, is to use distributed storage. That would
be to use free space on the computers in the network to store the backups.
This does not give you total control over the �les, but you could use private-
/public-key to encrypt/decrypt the data. You could never been 100% sure
that you could restore a �le, but statistically you are almost sure that you
could.

7.5 Releasing slbackup as an Open Source project

The software packages slbackup and webmin-slbackup, has during the project
been released as their own Open Source project and is now located on De-
bian's SourceForge clone Alioth. The reason for doing this is that these
packages hopefully will get contributers from others than the Skolelinux com-
munity which can test and help developing the product.
I will continue to maintain the Debian packages of the software made in this
project and do what I can to push them into Debian's archive. As the next
release of Skolelinux (after version 1.0) probably will be based on the next
stable release of Debian, it will be time saving for Skolelinux if the Debian
packages slbackup and webmin-slbackup make it into the next stable release of
Debian.

7.6 Working method

As mentioned earlier in this report, Skolelinux practices a special form of
management model called a do-o-cracy and the communication between the
Skolelinux developers takes place almost only on the Internet (IRC and email-
lists). To accomplish a successful project within a Skolelinux community, it
is important to make the most of the capable participators in the project. To
do this, one must use the communication channels actively from the start of
the project. An advantage one has as a participator in a Skolelinux project

64 Conclusion

is the freedom the do-o-cracy gives you, but it is important to discuss impor-
tant details with the other participators in the project. It is also important
to notice that the most active people participating to The Skolelinux Project,
often are the people you can trust ones advice and decisions. So the con-
clusion is that a project for Skolelinux can be very instructive if the project
member(s) make the most of the capabilities that the other participators in
the Skolelinux community.

Bibliography

[a�] Freshmeat project-page for a�o.
http://freshmeat.net/projects/a�o/ (accessed: 2003/09/24).

[ark] Arkeias website.
http://www.arkeia.com/platforms.html (accessed: 2003/09/07).

[baca] Bacula website.
http://www.bacula.org/ (accessed: 2003/09/15).

[bacb] Veritas website.
http://www.veritas.com (accessed: 2003/11/25).

[Bow03] John C. Bowman. Changelog for rlbackup, 2003.
http://www.math.ualberta.ca/imaging/rlbackup/ChangeLog
(accessed: 2003/09/27).

[Did99] Paolo Didonè. Burt license thread on the debian-legal mailing list,
1999.
http://lists.debian.org/debian-legal/1999/debian-legal-
199906/msg00212.html (accessed: 2003/10/07).

[Erl] Jesse Erlbaum. Perl module: Cgi::application.
http://search.cpan.org/dist/CGI-Application/
(accessed: 2003/11/05).

[Esc03a] Ben Escoto. Changelog for rdi�-backup, 2003.
http://rdi�-backup.stanford.edu/CHANGELOG
(accessed: 2003/09/07).

[Esc03b] Ben Escoto. Manpage for rdi�-backup, 2003.
http://rdi�-backup.stanford.edu/rdi�-backup.1.html
(accessed: 2003/11/09).

[Gag03] Marcel Gagné. Arkeia corporation's arkeia, version 5.0.16. UnixRe-
view.com, March 2003.
http://www.unixreview.com/documents/s=7822/sam0303web/
(accessed: October 7th, 2003).

66 BIBLIOGRAPHY

[Gie] Roland Giersig. Perl module: Expect.
http://search.cpan.org/ rgiersig/Expect-1.15/
(accessed: 2003/11/05).

[leg] Legato software website.
http://www.legato.com (accessed: 2003/11/25).

[Mel99] Eric Melski, editor. Burt: The Backup and Recovery Tool.
USENIX, 1999.

[Pre99] W. Curtis Preston, editor. Unix Backup & Recovery. O'Reilly,
Sebastopol, Canada, �rst edition, 1999.

[Ray01] Eric S. Raymond. The Cathedral and the Bazaar. O'Reilly, Se-
bastopol, Canada, 2001.

[Rei02] Petter Reinholdtsen. Skolelinux - architecture, 2002.
http://developer.skolelinux.no/arkitektur/arkitektur.html.en
(accessed: 2003/09/23).

[Sch] Ian Jackson & Christian Schwarz. The debian free software
guidelines.
http://www.debian.org/doc/debian-policy/ch-archive.html#s-
dfsg
(accessed: 2003/09/12).

[Ski03] Rune Nordbøe Skillingstad. slapd backup, 2003.
http://developer.skolelinux.no/�runesk/slapd-backup.html
(accessed: 2003/10/16).

[Sme03] Jonas Smedegaard. Programmer til delta-baseret spejling, 2003.
https://init.linpro.no/pipermail/skolelinux.no/linuxiskolen/2003-
August/036296.html (accessed: 2003/09/23).

[tol] The tolis group website.
http://www.tolisgroup.com/ (accessed: 2003/09/09).

[VB03] Tor Harald Nordnes og Truls Teigen Vibeke Braaten, Chris-
tian Juell. Ikt-driftshåndbok for skolelinux, 2003.
http://developer.skolelinux.no/dokumentasjon/IKT-bok.html
(accessed: 2003/10/23).

[Yrv01] Knut Yrvin. Gjørokratiet, 2001.
http://developer.skolelinux.no/info/prosjektet/innlegg/gjoerokrati.txt
(accessed: 2003/09/26).

Glossary

AFS Andrew File System
BSD Berkeley Software Distribution
build dependency to be able to build a package, some other packages has

to be installed
calculate delta a calculation that gives the di�erence between two �les
cpio a program that manages archives of �les
CVS Concurrent Versions System
debian-legal mailing list mailing list where discussions about legality is-

sues such as copyrights, patents etc.
dump utility that examines �les on a �le system and determines which �les

needed to be backed up
FAQ Frequently asked questions
�les with holes if you have a �le that has a lot of sectors containing only

NUL characters, it does not assign those sectors to actual sectors on
the disk

FTP File Transfer Protocol
GPL Gnu General Public License
ldif LDAP Data Interchange Format, used to represent LDAP entries in a

simple text format
IRC Internet Relay Chat
NFS Network File System
Northern Sami the language of the nomadic Lapp people in northern

Scandinavia and the Kola Peninsula

68 BIBLIOGRAPHY

Python a programming/scripting language
rdi� tool to make di�s for binary �les
rebuild one can rebuild a Debian package from the unstable archives on a

Debian stable installation to make the package installable on Debian
stable (if not all package dependencies are met, you have to �x them
to make the package build)

scp secure copy
SMB Server Message Block, a lightweight protocol designed to allow the

sharing of �les and printers in a small network
snfs Secure NFS and NIS via SSH Tunnel
Sourceforge is the world's largest Open Source software development web-

site
SSH Secure Shell
tar utility for packaging a set of �les as a single archive
Tcl scripting language
Webmin a web-based interface for system administration for Unix which is

the main con�guration utility in Skolelinux

Appendix A

Testlog: FauBackup

A.1 Installation and con�guration

FauBackup was downloaded from SourceForge (https://sourceforge.net/pro-
ject/show�les.php?group_id=73776), unpacked in /usr/src and compiled and
installed with make; make install. There was no problems during the instal-
lation phase.
To prevent the ssh-connection asking for password, there were created a key
pair without password protection on the client computer and the public-part
of the key was added to the list of authorized keys on the root-account on
the backup server (sandbox.idi.ntnu.no).

A.2 Testing hard links, sym links and �les with
holes

Hard links were tested with making a hard link between python_stat.zip and
python_stat-hardlink.zip:

werner@sule03:~$ ls -i pyse_stat*
32708 pyse_stat-hardlink.zip 32708 pyse_stat.zip

On the backup server, these �les also have the same inode-number:

Sym links were tested with a sym link, already in the home directory, to
/local/docs:

werner@sule03:~$ ls -l docs
lrwxrwxrwx 1 werner 1000 12 Aug 20 13:29 docs -> /local/docs/

70 Testlog: FauBackup

On the backup server, this �le looks like:

werner@sule03:~$ ls -l docs
lrwxrwxrwx 1 werner 1000 12 Aug 20 13:29 docs -> /local/docs/

To test if the backup system handles �les with holes, a C++ program that
makes �les with holes was used to make a 1GB �le. The home directory still
had the size of approximately 600MB, and on the backup server the size did
not change (see the line including faubackup):

sandbox:/backup# du --max-depth=1 -h .
16k ./lost+found
1.6G ./rdiff-backup
8.0k ./.ssh
619M ./faubackup
1.6G ./sule03.idi.ntnu.no
3.7G .

Appendix B

Testlog: rdi�-backup

B.1 Installation and con�guration

rdi�-backups requires librsync version 0.9.6 or later. librsync was down-
loaded from Sourceforge (https://sourceforge.net/project/show�les.php?gro-
up_id=56125) and unpacked in /usr/src with tar xvzf /local/download/librsync-
0.9.6. Con�guration was executed with ./con�gure, building, and testing with
make all check and installed it with make install. rdi�-backup also needed
python2.2, so it was installed using apt-get install python2.2 python2.2-dev.
rdi�-backup was downloaded from the website of rdi�-backup (http://rdi�-
backup.stanford.edu/rdi�-backup-0.12.4.tar.gz), and unpacked in /usr/src wi-
th tar xvzf /local/download/rdi�-backup-0.12.4.tar.gz. rdi�-backup was build and
installed with python2.2 setup.py install. Every step in installing both librsync
and rdi�-backup completed smoothly.
To prevent the ssh-connection asking for password, there were created a
keypair without password protection on the client computer and the public-
part of the key was added to the list of authorized keys on the root-account
on the backup server (sandbox.idi.ntnu.no).

B.2 Testing hard links, sym links and �les with
holes

Hard links were tested with making a hard link between python_stat.zip and
python_stat-hardlink.zip:

werner@sule03:~$ ls -i pyse_stat*
32708 pyse_stat-hardlink.zip 32708 pyse_stat.zip

On the backup server, these �les also have the same inode-number:

72 Testlog: rdi�-backup

sandbox:/backup/rdiff-backup/sule03-home-werner# ls -i pyse_stat*
180617 pyse_stat-hardlink.zip 180617 pyse_stat.zip

Sym links were tested with a sym link, already in the home directory, to
/local/docs:

werner@sule03:~$ ls -l docs
lrwxrwxrwx 1 werner 1000 12 Aug 20 13:29 docs -> /local/docs/

On the backup server, this �le looks like:

sandbox:/backup/rdiff-backup/sule03-home-werner# ls -l docs
lrwxrwxrwx 1 root root 12 Oct 4 03:01 docs -> /local/docs/

To test if the backup system handles �les with holes, a C++ program that
makes �les with holes was used to make a 1GB �le. The home directory still
had the size of approximately 600MB, and on the backup server the size was
1GB larger than it should be (see the line including rdi�-backup):

sandbox:/backup# du --max-depth=1 -h .
16k ./lost+found
1.6G ./rdiff-backup
8.0k ./.ssh
619M ./faubackup
1.6G ./sule03.idi.ntnu.no
3.7G .

rdi�-backup does not handle �les with holes.

Appendix C

Testlog: rlbackup

C.1 Installation and con�guration

rlbackup requires rsync version 2.5.6 or later. rsync was downloaded from
http://dp.samba.org/ftp/rsync/rsync-2.5.6.tar.gz, unpacked in /usr/src and com-
piled and installed with ./con�gure; make; make install.
rlbackup was downloaded from (http://www.math.ualberta.ca/imaging/rl-
backup/rlbackup-2.06.tar.gz), unpacked in /usr/src and made a symbolic link
to the rsync source directory called rsync-src. The client installation was as
easy as make install-client and edit the �le /usr/local/etc/rlbackup.conf. On the
server, rlbackup is supposed to run in a chrooted shell to increase the security.
So when trying to compile and install rlbackup with make install-server, this
problem occurs:
werner:/usr/src/rlbackup-2.06# make install-server
g++ -ansi -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE -O3 -Wall -DBACKUP=\"/backup\"
-DBINDIR=\"/bin\" -DMOUNT=\"/bin/mount\" -DUMOUNT=\"/bin/umount\"
-DMOUNTOPT=\""-t ext2 -o ro,loop"\" -DBINFS=\"/usr/local/bin/bin.ext2\" -DNICE=19
-o rsyncsh rsyncsh.cc

rsyncsh.cc: In function `char ** args(const char *)':
rsyncsh.cc:70: implicit declaration of function `int strdup(...)'
rsyncsh.cc:70: initialization to `char *' from `int' lacks a cast
rsyncsh.cc:73: implicit declaration of function `int index(...)'
rsyncsh.cc:73: assignment to `char *' from `int' lacks a cast
rsyncsh.cc:77: assignment to `char *' from `int' lacks a cast
rsyncsh.cc: In function `int System(const char *, const char * = 0)':
rsyncsh.cc:90: implicit declaration of function `int chroot(...)'
rsyncsh.cc: In function `char * remotehost()':
rsyncsh.cc:111: initialization to `char *' from `int' lacks a cast
rsyncsh.cc:116: implicit declaration of function `int inet_aton(...)'
rsyncsh.cc: In function `int main(int, char **)':
rsyncsh.cc:142: initialization to `char *' from `int' lacks a cast
make: *** [rsyncsh] Error 1

A quick solution was to remove the -ansi-option to g++ in rlbackup'sMake�le.
Then it worked doing a make install-server. Now, after the INSTALL-�le's
instructions, the command mkdir -p /backup/sule03.idi.ntnu.no/bin had to be
run.

74 Testlog: rlbackup

C.2 Testing hard links, sym links and �les with
holes

Hard links were tested with making a hard link between python_stat.zip and
python_stat-hardlink.zip:

werner@sule03:~$ ls -i pyse_stat*
32708 pyse_stat-hardlink.zip 32708 pyse_stat.zip

On the backup server, these �les also have the same inode-number:

sandbox:/backup/sule03.idi.ntnu.no/1/werner# ls -i pyse_stat*
542026 pyse_stat-hardlink.zip 542026 pyse_stat.zip

Sym links were tested with a sym link, already in the home directory, to
/local/docs:

werner@sule03:~$ ls -l docs
lrwxrwxrwx 1 werner 1000 12 Aug 20 13:29 docs -> /local/docs/

On the backup server, this �le looks like:

sandbox:/backup/sule03.idi.ntnu.no/1/werner# ls -l docs
lrwxrwxrwx 1 werner 1000 12 Oct 4 03:54 docs -> /local/docs/

To test if the backup system handles �les with holes, a C++ program that
makes �les with holes was used to make a 1GB �le. The home directory still
had the size of approximately 600MB, and on the backup server the size was
1GB larger than it should be (see the line including rlbackup):

sandbox:/backup# du --max-depth=1 -h .
16k ./lost+found
1.6G ./rdiff-backup
8.0k ./.ssh
619M ./faubackup
1.6G ./sule03.idi.ntnu.no
3.7G .

rlbackup does not handle �les with holes.

Appendix D

Users manual

Ved aktiv bruk av IT-systemer, er det vanlig at harddisker og andre deler
i systemet feiler. Det er også vanlig at brukere er uheldige og sletter �ler.
Grunnen til å ha et backupsystem er at man i disse tilfellene har en mulighet
til å komme tilbake til der man var før uhellet var ute.
Kostnadene ved det å ha et backupsystem, kan egentlig deles i to; utstyr og
arbeid. Utstyret du trenger er stort sett en stor harddisk som har plass til
alt du skal ta backup av i tillegg til de historiske endringene du ønsker å
lagre. Det vil si hvis du ønsker å ta vare på backup i et halvt år, må du, hvis
du bruker backupsystemet i Skolelinux, lagre alle endringene som har skjedd
dette halve året. Det �nnes backupsystemer som tar vare på daglig backup
i en uke, ukentlige backup i en måned, månedlige backup i et år osv, men
det backupsystemet som er brukt i Skolelinux tar vare på alle endringer fra
dag til dag i den tiden du ønsker dette.

GBAntall brukere 3 mnd. 6 mnd. 12 mnd.
10 0,8GB 1,4GB 2,6GB
100 7,8GB 14GB 26GB
500 40GB 70GB 130GB

Table D.1: Forslag til anbefalt diskplass for backup basert på 2 måneders
statistikk fra skolene i Time kommune, Runni ungdomsskole og
Ulsrud VGS. NB! dette er kun et forslag.

Arbeidskostnaden med backup er hovedsakelig forbundet med gjenskapning
av tapte data. To typiske eksempler på dette er at en bruker har ved et uhell
slettet �ler/kataloger på hjemmeområdet sitt og ønsker disse tilbake og at
en maskin eller harddisk har blitt ødelagt og man ønsker tilbake viktige data
på denne.

76 Users manual

D.1 Skolelinux Backup

Skolelinux kommer med et ferdig kon�gurert og igangsatt backupsystem,
�Skolelinux Backup�. For å forklare hvordan tjenesten �Skolelinux Backup�
er bygd opp, er det tre roller i backupsystemet som må være de�nert:

tjener Maskinen som �Skolelinux Backup� er installert på, hvor kon�g-
urasjons�len ligger og eventuelt Webmin-modulen er installert.

backupklient En maskin som er de�nert som klient i kon�gurasjonen til
�Skolelinux Backup�. Maskinen(e) som har denne rollen, blir tatt
backup av.

backuptjener En maskin som er de�nert som backuptjener i kon�gurasjo-
nen til �Skolelinux Backup�. Det er på denne maskinen backup lagres.

En viktig ting å huske på, er at en maskin kan ha �ere av disse rollene,
men kun en maskin kan inneha rollene tjener og backuptjener (kan være på
samme eller forskjellig maskin) og �ere maskiner kan ha rollen backupklient.
Hver natt starter backuptjenesten på maskinen som har tjener-rollen. Her
blir backupklientene behandlet i rekkefølge, hvor de �lene/katalogene som
er oppgitt for den backupklienten i kon�gurasjons�len blir tatt backup av.
Backupen blir plassert på backuptjeneren.
Følgende aksjoner i forbindelse med backupsystemet er nødvendige:

1. Kon�gurere, beskrevet i kapittel D.3.2
2. Gjenskape data, beskrevet i kapittel D.3.3
3. Konsistenssjekke backupsystemet, beskrevet i kapittel D.4

D.2 Installasjon

Installasjonen av backupsystemet på tjenermaskinen gjøres når du installerer
Skolelinux. Hvis du ønsker å ta backup av �ere enn tjenermaskinen, eller
ønsker å lagre backup på en annen maskin enn tjener, krever dette at du
installerer noe programvare.

D.2.1 Ny klient

Hvis du ønsker å ta backup av �ere enn tjenermaskinen, f.eks. en LTSP-
tjener, må du på denne maskinen installere følgende programpakker (gjøres
f.eks. med apt-get install):

D.3 Kon�gurasjon 77

� rdi�-backup

� ssh

For at backupsystemet faktisk skal ta backup av denne klienten, må den også
legges til i kon�gurasjonen. Se kapittel D.3 for en detaljert beskrivelse av
dette.

D.3 Kon�gurasjon

Kon�gurering av backupsystemet kan gjøres på to måter; i et vevgrensesnitt
som er endel av Webmin eller direkte editering av kon�gurasjons�ler. I denne
manualen tar vi for oss vevgrensesnittet.
Vevgrensesnittet består av fem hoveddeler som er kort beskrevet i listen
under:

� General
Denne delen er en slags startside, og inneholder litt generell informasjon
om backupsystemet.

� Backup details
Det er i denne delen brukeren har mulighet til å kon�gurere backupsys-
temet. Backupsystemet kan bli koplet inn og ut, starttidspunktet for
backupsesjonen (som kjøres en gang per døgn) kan spesi�seres, klient-
maskiner kan legges til, slettes og kon�gureres og backupserveren kan
kon�gureres.

� Restore
I denne delen har brukeren mulighet til å gjenopprette �ler fra backup.

� Maintenance
Denne delen gjør det mulig for brukeren å vedlikeholde backupen. Den
eneste funksjonen som er tilgjengelig her, er å slette gammel backup
fra backupserveren for å spare plass.

� SSH keys
For at backup skal kunne tas av eksterne klientmaskiner hver natt uten
at noen skal være der å taste inn et passord, benytter backupsystemet
SSH nøkler. Denne delen av systemet kon�gurerer nøklene for de ek-
sterne klientmaskinene.

I de neste delkapitlene vil hver av delene i listen over være detaljert beskrevet.

78 Users manual

Figure D.1: Skjermbilde av �General� siden i vevgrensesnittet

D.3.1 General

Denne delen er kun en slags startside, og inneholder ikke noe funksjonalitet,
kun informasjon om backupsystemet. I �gur D.1, ser vi et eksempel på
hvordan en slik side kan se ut.

D.3.2 Backup details

På denne siden har du tilgang til å se på og forandre all kon�gurasjon av både
backupklienter og backupserver. Figur D.2 viser et eksempel på hvordan en
slik side kan se ut.
På denne siden kan du spesi�sere følgende:

� om du vil at det skal bli tatt backup hver dag og eventuelt når på
døgnet du vil at dette skal skje (kl. 01:00 er Skolelinux standardvalg,
og også et smart valg)

� se på og forandre kon�gurasjonen til en enkelt backupklient

� legge til backupklienter

� slette backupklienter

� se på og forandre kon�gurasjonen til backupserveren

D.3 Kon�gurasjon 79

Figure D.2: Skjermbilde av �Backup details� siden i vevgrensesnittet

80 Users manual

Hvis du forandrer et av valgene som omhandler backuptidspunkt og trykker
�Submit�-knappen vil du bli sent tilbake til den samme siden med en melding
om at tidspunktet ble forandret.
Hvis du vil se på og eventuelt forandre kon�gurasjonen til en backupklient,
trykker du på �list con�guration� og du vil få opp en egen side som vist i
�gur D.3. Hvert valg på siden er beskrevet under:

Type of client Det �nnes to typer backupklienter, ekstern og lokal. Med
ekstern menes at klienten ikke er den maskinen Webmin kjøres på. I
Skolelinux vil lokal være tjener.intern, og ekstern være alle de andre
maskinene som f.eks. ltspserver00 hvis du har en egen LTSP-tjener.

Hostname or IP-address Dette er nettverksadressen til klienten (brukes
bare hvis klienten er av type ekstern). Du kan enten bruke maskin-
navnet (f.eks. ltspserver00.intern) eller IP-adressen (som for ltspserver00
oftest er 10.0.2.10).

Username Hvis klienten er av typen ekstern, må backupsystemet logge inn
på klienten med en bruker når backup skal taes. Denne brukeren vil i
de �este tilfeller være root, men kan i spesielle tilfeller være noe annet.
Dette feltet blir ikke brukt hvis klienten er av type lokal.

Days to keep backup Du kan velge hvor lenge du vil ta vare på gammel
backup. Skolelinux anbefaler et halvt år (ca. 185 dager), men dette
avhenger blant annet av hvor mye harddiskplass du har tilgjengelig.
Hvis du ikke ønsker at backupsystemet skal slette gammel backup au-
tomatisk, velger du 0 i dette feltet (du kan også slette gammel backup
manuelt på �Maintenance�-siden).
En viktig ting å bemerke seg i dette punktet, er at jo �ere dager du vel-
ger å ta vare på backupen, jo mer diskplass trenger du (se tabell D.1).

Directories to back up Denne listen viser hvilke �ler eller kataloger du
ønsker at backupsystemet skal ta backup av på klientmaskinen. I kon-
�gurasjonsgrensesnittet har du mulighet til å legge til to ekstra �ler
eller kataloger (hvis du ønsker å legge til �ere enn to, må du legge til
to og to av gangen).
Bak de katalogene som allerede er de�nert for klienten, er det en lenke
som heter �delete�. Denne bruker du hvis du ønsker at den tilhørende
katalogen ikke lengre skal taes backup av.

Submit changes Når du har gjort noen forandringer i grensesnittet beskrev-
et over, og ønsker å lagre dette trykker du på denne knappen. Du vil
da bli sent tilbake til den samme siden, men med de nye verdiene fylt
inn og en melding på toppen av siden som bekrefter forandringen(e)
du gjorde.

D.3 Kon�gurasjon 81

Figure D.3: Skjermbilde av �Con�gure client� siden i vevgrensesnittet

82 Users manual

Hvis du vil slette en backupklient, trykker du på �delete� på samme linjen
som klienten du vil slette, og du vil få opp en ny side som spør deg om du
er sikker på dette. Her må du trykke �Delete!�, og du vil få opp siden vist i
�gur D.2 på nytt.
Hvis du vil legge til en backupklient, skriver du inn navnet på klienten i
tekstfeltet til venstre for knappen �Add client� (dette navnet er noe du velger,
og det er lurt å velge et navn som gjør at du kjenner igjen klienten) og trykker
�Add client�. Da vil du få opp en side som likner på den som vises i �gur D.4.
Valgene du har på denne siden er veldig like de på siden for kon�gurasjon
av klienten. Den eneste forskjellen er at det ikke er fylt inn noen �ler eller
kataloger som skal taes backup av. For de forskjellige Skolelinux maskinene
har vi følgende forslag:
Tjener:

� /etc

� /skole/tjener/home0

� /var/backups

LTSP-tjener:

� /etc

� /opt/ltsp/i386/etc

Kombinert Tjener og LTSP-tjener:

� /etc

� /opt/ltsp/i386/etc

� /skole/tjener/home0

� /var/backups

Når du trykker �Submit changes� vil du få opp kon�gurasjonssiden beskrevet
over, nå med de verdiene du valgte samt en beskjed på toppen av siden om
at er lagt til og eventuelt en advarsel hvis noen av verdiene du skrev inn ikke
var gyldige.
Hvis du ønsker å se på eller forandre kon�gurasjonen til backuptjeneren,
trykker du på �list con�guration� under overskriften �Backup server� nederst
på siden. Da vil du få opp en egen side, som vist i �gur D.5.

D.3 Kon�gurasjon 83

Figure D.4: Skjermbilde av �Add client� siden i vevgrensesnittet

84 Users manual

Figure D.5: Skjermbilde av �Server con�guration� siden i vevgrensesnittet

Type of server Det �nnes to typer backuptjenere, ekstern og lokal. Med
ekstern menes at tjeneren ikke er den maskinen Webmin kjøres på. I
Skolelinux vil lokal bety at du lagrer backup på tjener.intern, og ekstern
være å lagre backup på en annen maskin, noe som vil være å anbefale
da dette vil gjøre at du kan dra nytte av �ere sider ved backup.

Hostname or IP-address Dette er nettverksadressen til backupserveren
(brukes bare hvis den er av type ekstern). Du kan enten bruke mask-
innavnet (f.eks. backup.intern hvis den er satt opp i DNS) eller IP-
adressen (som for backup.intern kan være 10.0.2.5).

Username Hvis backupserveren er av typen ekstern, må backupsystemet
logge inn på den med en bruker når backup skal taes. Denne brukeren
vil i de �este tilfeller være root, men avhengig av oppsettet på back-
upserveren kan dette i noen tilfeller være noe annet. Dette feltet blir
ikke brukt hvis backupserveren er av type lokal.

Directory to store backup in Her skal katalogen hvor backup skal la-
gres spesi�seres. I en standard Skolelinux-installasjon vil dette være
/skole/backup på tjeneren.

D.3 Kon�gurasjon 85

Figure D.6: Skjermbilde av �Restore� siden i vevgrensesnittet

D.3.3 Restore

Denne siden gir deg et enkelt, grensesnitt til å gjenskape �ler fra backup. På
denne siden, som er vist i �gur D.6, har du to valg. Enten kan du gjenskape
en enkelt�l eller katalog, eller du kan gjenskape alle �ler som har blitt tatt
backup av fra en klient.
Hvis du ønsker å gjenskape kun en �l eller en katalog, trykker du på �choose
�le or directory� tilhørende den klienten du ønsker å gjenskape fra. Nå vil
du få opp en side hvor du må skrive inn full bane til den �len eller katalogen
du vil gjenskape (eksempel: /skole/tjener/home0/olan/rapport.sxw) og trykke
�Choose �le/directory�. Nå vil en side, som likner på den i �gur D.7 komme
opp. Hvis du hadde valgt �Full restore� ville du ha kommet direkte til denne
siden.
Du vil få presentert en liste over hvilke �ler eller kataloger som vil bli gjen-
skapt. Det er også en liste over hvilke datoer backupsystemet har tilgjen-
gelige backup fra. Den nyeste backup vil være den som er forhåndsvalgt. Du
må også skrive inn hvor du vil at den/de gjenskapte �len(e) eller katalog(ene)
skal lagres. Standard er å gjenskape �lene til /tmp/<maskinnavn>/, men her
kan du bytte ut hvis du vil ha �lene et annet sted.
NB! Hvis den �lbanen du oppgir her �nnes fra før, vil backupsystemet feile,
og du får opp en side som forteller deg at �len(e) eller katalog(ene) �nnes fra
før. Hvis du er sikker på at du vil overskrive denne/disse, må du gå tilbake
til forrige side (med �Tilbake�-knappen i nettleseren din) og krysse av for
�Overwrite �les in the above directory�.

86 Users manual

Figure D.7: Skjermbilde av �Restore details� siden i vevgrensesnittet

NB2! Hvis du krysser av for dette, og du skal gjenskape en katalog, vil alt
i katalogen bli slettet, og gjenopprettet på nytt (dvs. du vil miste �ler som
har blitt laget/forandret siden sist backup), så bruk denne muligheten med
omhu!
NB3! Når du trykker på �Execute restore�-knappen, er det viktig at du ikke
trykker Escape-knappen på tastaturet eller Stopp-knappen i nettleseren, for
da vil du avbryte gjenskapingen, noe som høyst sannsynlig vil føre til at det
du gjenskaper vil bli ødelagt.

D.3.4 Maintenance

På denne siden kan du vedlikeholde backup som er tatt. Vedlikeholde betyr
her å slette gammel backup. Bakgrunnen for å ville gjøre dette, er f.eks. man-
glende harddisk-plass. Siden du får opp ser omtrent ut som den i �gur D.8.
Når du har bestemt hvilken klient du vil slette backup for, klikker du på
klientens navn, og du vil få opp en side som ser ut som �gur D.9. På denne
siden må du velge den datoen som skal være den siste du beholder. Dvs. at

D.3 Kon�gurasjon 87

Figure D.8: Skjermbilde av �Maintenance� siden i vevgrensesnittet

alle backups som er eldre enn valgte dato vil bli slettet. Når du så trykker
på �delete�-knappen, vil du få opp en side med en liste over alle backup'ene
som vil bli slettet, og du må bekrefte at du faktisk vil slette disse.
Når du bekrefter dette, vil backupsystemet begynne jobben med å slette
disse, noe som kan ta litt tid. NB! Det er nå viktig at du ikke trykker
Escape-tasten på tastaturet eller Stopp-knappen i nettleseren din, for da vil
du avbryte slette-jobben, noe som kan ødelegge deler av backupen din.

D.3.5 SSH keys

På denne siden sjekker du om oppsettet ditt fungerer med tanke på SSH-
nøkler. Dette er siden du vil besøke hvis du på �General�-siden får beskjed
om at SSH-nøklene dine ikke fungerer tilfredsstillende for oppsettet ditt.
Skolelinux Backup bruker SSH-nøkler for å unngå lagring av passord. En
kort forklaring på SSH-nøkler kommer under. Denne siden automatiserer det
arbeidet det er å få SSH-nøklene på plass for at den passordløse forbindelsen
skal fungere når backupsystemet kjører igang midt på natta (SSH-nøkler er
en sikker måte å gjøre dette på, selv om det kan høres litt farlig ut med
passord-løs innlogging). Siden kan likne på det som er vist i �gur D.10
Funksjonaliteten som blir presentert på denne siden er (for å forstå detaljene,
se den enkle forklaringen under lista over funksjonene):
Add Dette kopierer den o�entlige delen av nøkkelparet over på den eksterne

maskinen. For å gjøre dette får du opp en side hvor du blir spurt om
å oppgi passord. Dette passordet tilhører brukeren du har oppgitt i
klientkon�gurasjonen på klientmaskinen.

88 Users manual

Figure D.9: Skjermbilde av �Maintenance - delete� siden i vevgrensesnittet

Create Dette lager et nøkkel-par (privat og o�entlig del) på den lokale
maskinen.

Hva er SSH-nøkler og hva brukes de til?
Kort fortalt kan man bruke SSH-nøkler for å logge seg inn på en maskin
over nettverket uten å bruke passord. Det første som må gjøres, er å lage
et nøkkel-par, som består av en privat og en o�entlig nøkkel, på hjemmeom-
rådet sitt (.ssh/id_dsa og .ssh/id_dsa.pub er hendholsvis den private og of-
fentlige nøkkelen). Det neste som må gjøres er å legge den o�entlige nøkkelen
(innholdet i �la) til i �la -.ssh/authorized_keys på hjemmeområdet til brukeren
du skal logge inn som på den eksterne maskinen.
For en mer detaljert beskrivelse av SSH (eget kapittel om nøkler), se på dette
dokumentet: http://www.mindrot.org/�djm/auug2002/ssh-tutorial.pdf

D.4 Konsistenssjekk

Det er viktig og konsistenssjekke backupen med jevne mellomrom. Grunnen
til dette er at det er bedre å oppdage at backupen eventuelt er ødelagt før
du virkelig trenger den.
En enkel måte å konsistenssjekke backupen på, er å gjøre en test-gjenskapning
av noen data. Et eksempel er at du kan gjenskape alle data til for eksem-
pel en bruker til /tmp/brukernavn og så sjekke at dette går smertefritt og
at �lene ligger der og går an å åpne. Hvordan dette gjøres er beskrevet i
kapittel D.3.3.

D.5 Referanser 89

Figure D.10: Skjermbilde av �SSH keys� siden i vevgrensesnittet

D.5 Referanser

Skolelinux Backup:
http://slbackup.alioth.debian.org/
Studentprosjektets:
http://developer.skolelinux.no/info/studentgrupper/2003-backup/
rdi�-backup:
http://rdi�-backup.stanford.edu/
Skolelinux:
http://www.skolelinux.no/

Appendix E

Source code: slbackup

E.1 /etc/slbackup/slbackup.conf

<client>
<localhost>

address localhost
location /etc

5 location /home
location /var/backups
type local
user root
keep 185

10 </localhost>
<externhost>
address extern.domain
location /etc
location /var/backups

15 # type extern
user root
keep 0
</externhost>
</client>

20 server_address backupserver.domain
server_destdir /backup
server_type local
server_user root

E.2 /usr/share/perl5/SLBackup.pm

#!/usr/bin/perl
#
Library for use with slbackup (Skolelinux Backup)
#

92 Source code: slbackup

5 # Content:
− deal with con�guration �les
− deal with log �les
#
$Id: SLBackup.pm,v 1.2 2003/11/27 17:13:47 werner Exp $

10 #
Most of the code in this module is copied from the
LRRD project (http://www.linpro.no/project/lrrd/)
#
Thanks to Linpro AS for well written perl code!

15 #

package SLBackup;

use Exporter;
20 @ISA = ('Exporter');

@EXPORT = ('slbackup_overwrite',
'slbackup_readcon�g',
'slbackup_writecon�g',
'slbackup_con�g');

25
use strict ;
use Con�g::General;

my $con�g = undef;
30 my $con�g�le = '/etc/slbackup/slbackup.conf';

my $DEBUG = 0;

sub slbackup_readcon�g {
35 my ($conf, $missingok) = @_;

$conf | |= $con�g�le ;

if (! −r $conf and ! $missingok) {
print "slbackup_readcon�g: cannot open '$conf'\n";

40 return undef;
}

my $con�le = new Con�g::General($conf);
my $con�g = { $con�le−>getall };

45 return ($con�g) ;
}

sub slbackup_writecon�g {
50 my ($data�lename, $data) = @_;

my $data�le = new Con�g::General();
$data�le−>save_�le($data�lename, $data);

E.3 /etc/cron.d/slbackup 93

}
55

1;

__END__

E.3 /etc/cron.d/slbackup

cron job for Skolelinux Backup (every night at 01:00)
#0 1 * * * root if [−x /usr/share/slbackup/slbackup−cron −a −f
/etc/slbackup/slbackup.conf]; then /usr/share/slbackup/slbackup−cron
; �

E.4 /usr/share/slbackup/client/slbackup-cron

#!/usr/bin/perl
#
Script to be run by cron each night to backup locations speci�ed in
/etc/slbackup/slbackup.conf

5 #
$Id: slbackup−cron.pl,v 1.2 2003/11/27 17:13:47 werner Exp $
#

use strict ;
10 use Con�g::General;

use POSIX qw(strftime);
use SLBackup;

my $log�le = "/var/log/slbackup/slbackup.log";
15

open log�le
open (LOG, "�$log�le") or die ("Unable to open $log�le\n");
logger ("Starting slbackup:");

20
fetch con�guration
my $con�le = '/etc/slbackup/slbackup.conf';
my $con�g = &slbackup_readcon�g($con�le);

25 # run rdi�−backup for each client in con�guration
for my $key (keys %{$con�g−>{client}}) {

my $client = $con�g−>{client}−>{$key};
my $execstr = "";
my $execstr_serverpart = "";

30 my $execstr_clientpart = "";

check if server is not of type "local" −>

94 Source code: slbackup

add server−part of the exeecstr in a
if (exists ($con�g−>{server_type}) and

35 $con�g−>{server_type} ne "local") {

check if server_address is present in con�guration
#FIXME − check that the address is valid
if (! exists ($con�g−>{server_address})) {

40 logger ("Address for server is not present in con�guration " .
" �le . . . please �x !");

logger("Failed backing up clients.");
last ;

}
45

check if server_user is present in con�guration
if (! exists ($con�g−>{server_user})) {

logger ("Username for server is not present in con�guration " .
" �le . . . please �x !");

50 logger("Failed backing up clients.");
last ;

}

test if ssh−connection to server works ok
55 my $sshteststr = "ssh −o PasswordAuthentication=no " .

"$con�g−>{server_user}" . "@" .
"$con�g−>{server_address} 'echo −n 1'";

if (` $sshteststr ` ne "1") {
logger ("ssh−connection to server $key failed...");

60 logger ("Failed backing up clients.");
last ;

}

test that rdi�−backup has the same version as here
65 $sshteststr = "ssh $con�g−>{server_user}" . "@" .

"$con�g−>{server_address} 'rdi�−backup −V'";
if (` $sshteststr ` ne ` rdi�−backup −V`) {

logger (" rdi�−backup does not have the same version on " .
"this computer and the backup server... please �x!");

70 logger ("Failed backing up clients.");
last ;

}

the server−part of the con�guration shall be ok, so
75 # build server−part of execstr and continue

$execstr_serverpart =
"$con�g−>{server_user}\@$con�g−>{server_address}::";

}

80 # check if destination directory on backup server is represented in
con�guration �le −> return, else add it :)

E.4 /usr/share/slbackup/client/slbackup-cron 95

if (! exists ($con�g−>{server_destdir})) {
logger ("Destination directory on the server is not speci�ed " .

"in the con�guration. . . please �x !");
85 logger ("Failed backing up clients.");

last ;
}
$execstr_serverpart .= "$con�g−>{server_destdir}/$key";

90
start with the client−handling
logger ("Starting backup of client $key");

check if client not is of type "local" −>
95 # − check if necessary con�guration options are present

− check if ssh−connection is ok
− check if rdi�−backup is the same version as here
if (exists ($con�g−>{client}−>{$key}−>{type}) and

$con�g−>{client}−>{$key}−>{type} ne "local") {
100

check that address is provided
#FIXME − check that the address is valid
if (! exists ($con�g−>{client}−>{$key}−>{address})) {

logger ("Address for client $key is not present in " .
105 "con�guration . . . please �x !");

logger ("Backup of client $key failed.");
next;

}

110 # check that username is provided
if (! exists ($con�g−>{client}−>{$key}−>{user})) {

logger ("Username for client $key is not present in " .
"con�guration . . . please �x !");

logger ("Backup of client $key failed");
115 next;

}

test that ssh connection to the client works ok
my $sshteststr = "ssh −o PasswordAuthentication=no " .

120 "$con�g−>{client}−>{$key}−>{user}" . "@" .
"$con�g−>{client}−>{$key}−>{address} 'echo −n 1'";

if (` $sshteststr ` ne "1") {
logger ("ssh−connection to $key failed...");
logger ("Failed backing up client $key.");

125 next;
}

test that rdi�−backup on the client is the same version as here
$sshteststr = "ssh $con�g−>{client}−>{$key}−>{user}" . "@" .

130 "$con�g−>{client}−>{$key}−>{address} 'rdi�−backup −V'";

96 Source code: slbackup

if (` $sshteststr ` ne ` rdi�−backup −V`) {
logger (" rdi�−backup does not have the same version on this " .

"computer and the client $key... please �x!");
logger ("Failed backing up client $key.");

135 next;
}

client con�guration shall be ok, so we continue:
add client address in the client−part of execstr

140 $execstr_clientpart .=
"$con�g−>{client}−>{$key}−>{user}\@" .
"$con�g−>{client}−>{$key}−>{address}::";

}

145 # add the common part of the client execstring
(specify '/' as the location)
$execstr_clientpart .= "/";

build execute string
150 my $execstr = "rdi�−backup −−print−statistics ";

include clients locations if exists
if (! exists ($con�g−>{client}−>{$key}−>{location})) {

logger ("Locations for client $key is not present in " .
155 "con�guration . . . please �x !");

logger ("No �les from client $key will be backed up.");
next;

} elsif (ref ($con�g−>{client}−>{$key}−>{location}) eq "ARRAY") {
there are more than one location => location is an array

160 for my $loc (@{$con�g−>{client}−>{$key}−>{location}}) {
$execstr .= "−−include $loc ";

}
} else {

there is only one location => location is a string
165 my $loc = $con�g−>{client}−>{$key}−>{location};

$execstr .= "−−include $loc ";
}

exclude everything else
170 $execstr .= "−−exclude '/*' ";

include client−part and server−part
$execstr .= "$execstr_clientpart $execstr_serverpart";

175 # before backing up, remove old backups
my $client_keep;
if (($client_keep = $con�g−>{client}−>{$key}−>{keep}) and

($client_keep gt 0)) {
my $removestr = "rdi�−backup −−force −−remove−older−than ";

E.4 /usr/share/slbackup/client/slbackup-cron 97

180 $removestr .= "$client_keep" . "D ";
my $server_type = $con�g−>{server_type};
my $server_destdir = $con�g−>{server_destdir};
my $server_address = $con�g−>{server_address};
my $server_user = $con�g−>{server_user};

185
if ($server_type eq "extern") {

$removestr .= "$server_user" . "@" . "$server_address" . "::";
}
if (grep (/\/$/, $server_destdir)) {

190 $removestr .= "$server_destdir";
} else {

$removestr .= "$server_destdir" . "/";
}
$removestr .= "$key";

195
remove backups older than $client_keep
#FIXME − check if there are backups there...
logger ("Trying to remove backups older than $client_keep days:");
my $output .= `$removestr 2>&1`;

200 logger ("$output");

0 mean success −> invert it
my $retval = ! $?;

205 # log
if ($retval) {

logger ("Removing backups older than $client_keep days sccesseded!");
} else {

logger ("Failed removing backups older than $client_keep.");
210 }

}

run rdi�−backup for client $key
my $output .= `$execstr 2>&1`;

215 logger ("\n$output");

0 mean success −> invert it
my $retval = ! $?;

220 # log
if ($retval) {

logger ("Successfully �nished backing up client $key");
} else {

logger ("Failed backing up client $key");
225 }

}

logger ("Finished slbackup.");

98 Source code: slbackup

close (LOG);
230

sub logger {
my ($comment) = @_;
my $now = strftime "%b %d %H:%M:%S", localtime;

235 print�ush LOG ("$now − $comment\n");
}

240 1;

Appendix F

Source code: webmin-slbackup

F.1 WebminSLBackup.pm

#
WebminSLBackup.pm −− Webmin module for the Skolelinux Backup service
By Morten Werner Olsen <werner@skolelinux.no>
#

5 # Copyright (c) 2003, Skolelinux.
See COPYING in the source distribution for license details.
#
$Id: WebminSLBackup.pm,v 1.2 2003/11/27 17:13:47 werner Exp $
#

10
This is a subclass of CGI::Application
package WebminSLBackup;
use base 'CGI::Application';
use Expect;

15 use Net::Ping;
use POSIX qw(strftime);
use SLBackup;

$Expect::Exp_Internal = 0;
20 $Expect::Log_Stdout = 0;

use strict ;

my $con�le = "/etc/slbackup/slbackup.conf";
25 my $log�le = "/var/log/slbackup/webmin−slbackup.log";

unfortunately webmin's web−lib.pl uses a lot of global functions so because
we use strict we have to predeclare them here.
use vars qw(%con�g %gcon�g $module_name $module_con�g_directory $tb $cb

30 $scriptname $remote_user $base_remote_user $current_theme $root_directory
$module_root_directory %module_info %text);

100 Source code: webmin-slbackup

This function is the �rst one called when the script is run. Ideally this
35 # and cgiapp_postrun would be in a class which contained all the infrastructure

that webmin modules using CGI::Application share in common.
The inheritance tree would look like this :
#
,−−−> SLBackup.pm

40 # CGI::Application −−> CGI::Application::Webmin −+−−−> Foo.pm
(or some similiar name) `−−−> Bar.pm
(etc .)
sub cgiapp_init
{

45 my ($self) = @_;

Import the webmin helper functions.
do '/usr/share/webmin/web−lib.pl';

50 # initalize webmin con�guration.
&init_con�g();

Convert all the webmin global variables into class parameters to make
it more OOP.

55 map { $self−>param($_, $con�g{$_}) } keys %con�g;
map { $self−>param($_, $con�g{$_}) } keys %gcon�g;
map { $self−>param($_, $con�g{$_}) } keys %module_info;
$self−>param('module_name', $module_name);
$self−>param('module_con�g_directory', $module_con�g_directory);

60 $self−>param('tb', $tb);
$self−>param('cb', $cb);
$self−>param('scriptname', $scriptname);
$self−>param('remote_user', $remote_user);
$self−>param('base_remote_user', $base_remote_user);

65 $self−>param('current_theme', $current_theme);
$self−>param('root_directory', $root_directory);
$self−>param('module_root_directory', $module_root_directory);

}

70
#
This function is called after each run mode (See CGI::Application docs.)
Here we wrap the output of each template with the webmin header and footer
#

75 sub cgiapp_postrun
{
$output is a reference to the results of a run mode.
my ($self, $output) = @_;

80 # We want to send out the input unbu�ered.

F.1 WebminSLBackup.pm 101

local $| = 1;

We don't want CGI::Application to send the http headers. The function
below will do that.

85 $self−>header_type('none');

print the webmin header.
header($self−>param('module_name'), '');

90 print $$output;

print the webmin footer
#footer();
&footer("/", $text{'index_return'});

95
If we don't erase the contents of $output, the body of the page will be
displayed twice
$$output = '';

}
100

#
Here we set up the SLBackup class. Think of it as the constructor.
#
sub setup

105 {
my ($self) = @_;

The initial run mode or if no run mode is speci�ed.
$self−>start_mode('general');

110
Our run modes and the functions they map to.
$self−>run_modes(
'general ' => 'general',
'backup' => 'backup',

115 'backup_con�gure_client' => 'backup_con�gure_client',
'backup_add_client' => 'backup_add_client',
'backup_delete_client' => 'backup_delete_client',
'backup_con�gure_server' => 'backup_con�gure_server',
' restore ' => 'restore',

120 ' restore_choose' => 'restore_choose',
' restore_choose_snapshot' => 'restore_choose_snapshot',
' restore_execute' => 'restore_execute',
'maint' => 'maint',
'maint_delete_older' => 'maint_delete_older',

125 'maint_delete_con�rm' => 'maint_delete_con�rm',
'sshkeys' => 'sshkeys',
'sshkeys_add' => 'sshkeys_add',
'sshkeys_create' => 'sshkeys_create',
'sshkeys_delete' => 'sshkeys_delete',

102 Source code: webmin-slbackup

130 # AUTOLOAD is called if something other than the above run modes is asked
for. In this case we just fall back to general.
AUTOLOAD => 'general',

) ;

135 }

#
This run mode ...
#

140 sub general
{
my ($self) = @_;
my $last_session;
my $session_�nished = 0;

145 my $sshkeys_ok = 0;

fetch con�guration data
my $con�g = slbackup_readcon�g ($con�le);

150 # �nd out details about the last session
if (open (LOGFILE, "/var/log/slbackup/slbackup.log")) {

my @�nished_sessions = grep (/Finished slbackup/, <LOGFILE>);
close (LOGFILE);

155 for my $session (@�nished_sessions) {
($last_session) = split (/ − /, $session);

}
$session_�nished = 1;

}
160

does the ssh keys work properly?
my $sshkeys_localhost = 0;
my $sshkeys_server = 0;
my $sshkeys_client = 0;

165
localhost test
my @sshprivstat = stat ("/root/.ssh/id_dsa");
my @sshpubstat = stat ("/root/.ssh/id_dsa.pub");
if (($sshprivstat [7] gt 0) and ($sshpubstat[7] gt 0)) {

170 $sshkeys_localhost = 1;
}

my ($server_address, $server_destdir, $server_type, $server_user) =
list_server_con�g();

175 # server test
if ($sshkeys_localhost) {

my $execstr = "ssh −o PasswordAuthentication=no $server_user" . "@" .
"$server_address 'echo 1'";

F.1 WebminSLBackup.pm 103

if (($server_type eq "local") or (` $execstr ` eq "1")) {
180 $sshkeys_server = 1;

}
}

clients test
185 my @clients = list_clients();

if ($sshkeys_localhost and $sshkeys_server) {
for my $key (keys %{$con�g−>{client}}) {

if ($con�g−>{client}−>{$key}−>{type} eq "extern") {
190 my $client_address = $con�g−>{client}−>{$key}−>{address};

my $client_user = $con�g−>{client}−>{$key}−>{user};
my $execstr = "ssh −o PasswordAuthentication=no $client_user" .

"@" . "$client_address 'echo −n 1'";
if (` $execstr ` eq "1") {

195 $sshkeys_client = 1;
} else {

$sshkeys_client = 0;
last;

}
200 } else {

$sshkeys_client = 1;
}

}
}

205
if ($sshkeys_client) {

$sshkeys_ok = 1;
}

210 # �nd the clients in con�guration
@clients = list_clients_html();

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('general', die_on_bad_params => 0);

215
�ll template with text−strings
�ll _in_template($template);

�ll template with "local" variables
220 $template−>param(last_session => $last_session,

session_�nished => $session_�nished,
clients => \@clients, sshkeys_ok => $sshkeys_ok,);

return $template−>output;
225 }

#

104 Source code: webmin-slbackup

This run mode ...
#

230 sub backup
{
my ($self) = @_;
my $backup_enable = 1;
my $backuptime_changed;

235 my $client;
my $client_deleted = 0;
my $newtime = "";
my $output = "";

240 # Fetching query from webform
my $q = $self−>query();

fetch details from cron job
open (CRONFILE, "/etc/cron.d/slbackup");

245 my @cronline = grep (/slbackup−cron/, <CRONFILE>);
close (CRONFILE);

if (grep (/^\#/, $cronline[0])) {
$cronline [0] =~ s/\#//g;

250 $backup_enable = 0;
}
my ($min, $hour) = split(/ /, $cronline[0], 3) ;

255 # Check if a new time was submitted
if ($q−>param("backuptime−submit")) {

my $enable = $q−>param("backup_enable");
$newtime = $q−>param("newtime");
make new cron−line

260 ($hour, $min) = split(/:/, $newtime);
my $newcron = "# cron job for Skolelinux Backup ";
$newcron .= "(every night at $hour:$min)\n";
if ($enable =~ /[Nn]o/) {

$newcron .= "#";
265 $backup_enable = 0;

} else {
$backup_enable = 1;

}
$newcron .= "$min $hour * * * root ";

270 $newcron .= "if [−x /usr/share/slbackup/slbackup−cron " .
"−a −r /etc/slbackup/slbackup.conf]; then " .
"/usr/share/slbackup/slbackup−cron ; �\n";

save this in cron job
275 open(CRONFILE, ">/etc/cron.d/slbackup");

print(CRONFILE "$newcron");

F.1 WebminSLBackup.pm 105

close(CRONFILE);

set bool newtime_changed
280 $backuptime_changed = 1;

} else {
if (length($min) le 1) {

$min = "0$min";
}

285 if (length($hour) le 1) {
$hour = "0$hour";

}
$newtime = "$hour:$min";

290 # set bool newtime_changed
$backuptime_changed = 0;

}

Check if a client has been deleted
295 if ($q−>param("action") eq "delete_client") {

which client is to be deleted
$client = $q−>param("client");

fetch con�guration
300 my $con�g = slbackup_readcon�g ($con�le);

delete client from con�g
delete ($con�g−>{client}−>{$client});

305 # write con�guration
slbackup_writecon�g($con�le , $con�g) ;

set bool client_deleted
$client_deleted = 1;

310 }

�nd the clients and servername in con�guration
my $con�g = slbackup_readcon�g ($con�le);
my $backupserver = $con�g−>{server_address};

315 my @clients = list_clients_html();

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('backup', die_on_bad_params => 0);

320 # �ll template with text−strings
�ll _in_template($template);

$template−>param(newtime => $newtime,
backuptime_changed => $backuptime_changed,

325 backupserver => $backupserver,

106 Source code: webmin-slbackup

backup_enable => $backup_enable,
client => $client,
clients => \@clients,
client_deleted => $client_deleted,

330 con�gure => $text{"con�gure"},
delete => $text{"delete"},);

return $output . $template−>output;
}

335 #
This run mode ...
#
sub backup_add_client
{

340 my ($self) = @_;

Fetching query from webform
my $q = $self−>query();

345 # �nd which client to add
my $client = $q−>param("clientname");

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('backup_add_client', \

350 die_on_bad_params => 0);

�ll template with text−strings
�ll _in_template($template);

355 $template−>param(client => $client,);
return $template−>output;

}

#
360 # This run mode ...

#
sub backup_con�gure_client
{
my ($self) = @_;

365 my $client;
my $client_added = 0;
my $client_added_success = 0;
my $client_added_error = "";
my $client_confd = 0;

370 my $client_changed = 0;
my $client_hostname;
my $client_unreach = 0;
my $client_unreach_err = "";
my $client_type_extbool;

F.1 WebminSLBackup.pm 107

375 my $client_user;
my $client_keep;
my $delete_dir;
my $delete_dir_bool = 0;
my $delete_dir_deleted = 0;

380 my $output = "";

Fetching query from webform
my $q = $self−>query();

385 # fetch old con�guration
my $con�g = slbackup_readcon�g($con�le);

is the user coming from backup_con�gure_client?
if ($client = $q−>param("client_confd")) {

390 # fetch old con�guration
my @old�les = list_�les ($client) ;
my $old�les_len = scalar (@old�les);
my @new�les;
my $�les_changed = 0;

395 my $type_changed = 0;
my $hostname_changed = 0;
my $user_changed = 0;
my $keep_changed = 0;

400 ## update con�guration
check if client type is updated
if ($q−>param("type") ne $con�g−>{client}−>{$client}−>{type}) {

$con�g−>{client}−>{$client}−>{type} = $q−>param("type");
$type_changed = 1;

405 }

check if client hostname is updated
if ($q−>param("hostname") ne $con�g−>{client}−>{$client}−>{address}) {

$con�g−>{client}−>{$client}−>{address} = $q−>param("hostname");
410 $hostname_changed = 1;

}

check if client username is updated
if ($q−>param("username") ne $con�g−>{client}−>{$client}−>{user}) {

415 $con�g−>{client}−>{$client}−>{user} = $q−>param("username");
$user_changed = 1;

}

check if days to keep is updated
420 if ($q−>param("keep") ne $con�g−>{client}−>{$client}−>{keep}) {

if ($q−>param("keep") =~ /\d?/) {
$con�g−>{client}−>{$client}−>{keep} = $q−>param("keep");
$keep_changed = 1;

108 Source code: webmin-slbackup

}
425 }

check for changed �le
for my $�le (@old�les) {

my $new�le = $q−>param($�le);
430 push (@new�les, $new�le);

if ($�le ne $new�le) {
$�les_changed = 1;

}
}

435
check if new �le (s) are added
my $new�le0 = $q−>param("new�le0");
my $new�le1 = $q−>param("new�le1");
logger("new�le0: .$new�le0. , new�le1 : .$new�le1.");

440 if ($new�le0 ne "") {
push (@new�les, $new�le0);
$�les_changed = 1;

}
if ($new�le1 ne "") {

445 push (@new�les, $new�le1);
$�les_changed = 1;

}

save the new con�guration if change has
450 if ($type_changed or $hostname_changed or $user_changed or

$�les_changed or $keep_changed) {
delete ($con�g−>{client}−>{$client}−>{location});
if (scalar (@new�les) eq 1) {

$con�g−>{client}−>{$client}−>{location} = $new�les[0];
455 } else {

@{$con�g−>{client}−>{$client}−>{location}} = @new�les;
}
slbackup_writecon�g ($con�le , $con�g) ;

460 # set bool client_changed
$client_changed = 1;

}

set bool client_confd
465 $client_confd = 1;

} else {
�nd which client to con�gure
$client = $q−>param("client");

}
470

check if some directories is to be deleted and delete it
if ($delete_dir = $q−>param("delete_dir")) {

F.1 WebminSLBackup.pm 109

delete �le from con�guration:
build a new list of �les to backup

475 my @new�les;

check how many locations in con�g �le
if (ref ($con�g−>{client}−>{$client}−>{location}) eq "") {

check that location actually is something
480 if ($con�g−>{client}−>{$client}−>{location} ne "") {

if ($con�g−>{client}−>{$client}−>{location} ne $delete_dir) {
push (@new�les, $con�g−>{client}−>{$client}−>{location});

} else {
$delete_dir_deleted = 1;

485 }
}

} elsif (ref ($con�g−>{client}−>{$client}−>{location}) eq "ARRAY") {
for my $�le (@{$con�g−>{client}−>{$client}−>{location}}) {

if ($�le ne $delete_dir) {
490 push(@new�les, $�le) ;

} else {
$delete_dir_deleted = 1;

}
}

495 }

rewrite con�guration
check if @new�les is empty
if (scalar (@new�les) eq 0) {

500 delete ($con�g−>{client}−>{$client}−>{location});
} else {

@{$con�g−>{client}−>{$client}−>{location}} = @new�les;
}
slbackup_writecon�g ($con�le , $con�g) ;

505
set bool delete_dir_bool
$delete_dir_bool = 1;

}

510 # is the client added?
if ($q−>param("addclient")) {

set bool client_added
$client_added = 1;

515 # fetch data from web form
my $client = $q−>param("client");
my $client_type = $q−>param("type");
my $client_hostname = $q−>param("hostname");
my $client_username = $q−>param("username");

520 my $client_keep = $q−>param("keep");
my @�les;

110 Source code: webmin-slbackup

for (my $i = 0; $i lt 5 ; $i++) {
my $�le = $q−>param("new�le" . $i);
if ($�le ne "") {

525 push (@�les, $�le) ;
}

}

check that user has given us enough information
530 if ($client eq "") {

client name has to ...
$client_added_error = $text{"added_error_name"};

} elsif (($client_type ne "local") and ($client_type ne "extern")) {
something really strange has happened

535 # (not post from original form or something)
$client_added_error = $text{"added_error_type"};

} elsif (($client_type eq "extern") and ($client_hostname eq "")) {
client hostname cannot be nothing
$client_added_error = $text{"added_error_type_name"};

540 # check that client does not already exist
} elsif (! $con�g−>{client}−>{$client}) {

client does not exist −> adding
building hash
my %newclient;

545 $newclient{"type"} = $client_type;
if ($client_hostname ne "") {

$newclient{"address"} = $client_hostname;
}
if ($client_username eq "") {

550 $newclient{"user"} = "root";
} else {

$newclient{"user"} = $client_username;
}
if ($client_keep =~ /\d?/) {

555 $newclient{"keep"} = $client_keep;
} else {

#FIXME test if this really is a number, not just set it to 185
$newclient{"keep"} = 185;

}
560

if (scalar (@�les) eq 1) {
$newclient{"location"} = $�les[0] ;

} elsif (scalar (@�les) gt 1) {
$newclient{"location"} = \@�les;

565 }

store con�guration
$con�g−>{client}−>{$client} = \%newclient;
slbackup_writecon�g($con�le , $con�g) ;

570

F.1 WebminSLBackup.pm 111

set client_added_success−bool
$client_added_success = 1;

} else {
client existed (?)

575 $client_added_error = $text{"added_error_client_existed"};
}

} else {
set bool client_added
$client_added = 0;

580 }

fetch data about client from con�guration �le
check the hostname−validity if client is extern
if ($con�g−>{client}−>{$client}−>{address}) {

585 $client_hostname = $con�g−>{client}−>{$client}−>{address};
} else {

$client_hostname = "";
}
if ($con�g−>{client}−>{$client}−>{type} eq "extern") {

590 $client_type_extbool = 1;

check that the hostname/ip−address is valid
$client_unreach_err = hostname_validate($client_hostname);

595 if ($client_unreach_err) {
$client_unreach = 1;

}
} else {

$client_type_extbool = 0;
600 }

$client_user = $con�g−>{client}−>{$client}−>{user};
$client_keep = $con�g−>{client}−>{$client}−>{keep};
my @�les = list_�les_html ($client);

605
See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('backup_con�gure_client', \

die_on_bad_params => 0);

610 # �ll template with text−strings
�ll _in_template($template);

$template−>param(client => $client, client_added => $client_added,
client_confd => $client_confd,

615 client_changed => $client_changed,
client_added => $client_added,
client_added_error => $client_added_error,
client_added_success => $client_added_success,
client_hostname => $client_hostname,

112 Source code: webmin-slbackup

620 client_unreach => $client_unreach,
client_unreach_err => $client_unreach_err,
client_type_extbool => $client_type_extbool,
client_user => $client_user,
client_keep => $client_keep,

625 delete_dir => $delete_dir,
delete_dir_bool => $delete_dir_bool,
delete_dir_deleted => $delete_dir_deleted,
�les => \@�les,);

630 return $output . $template−>output;
}

#
635 # This run mode ...

#
sub backup_delete_client
{
my ($self) = @_;

640 my $client;

Fetching query from webform
my $q = $self−>query();

645 # �nd which client to delete public key on
$client = $q−>param("client");

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('backup_delete_client', \

650 die_on_bad_params => 0);

�ll template with text−strings
�ll _in_template($template);

655 $template−>param(client => $client,);
return $template−>output;

}

#
660 # This run mode ...

#
sub backup_con�gure_server
{
my ($self) = @_;

665 my $backupdir;
my $serveraddr;
my $servertype;
my $serveruser;

F.1 WebminSLBackup.pm 113

my $serverconf_changed = 0;
670 my $localhost = 1;

my $output = "";

Fetching query from webform
my $q = $self−>query();

675
fetch con�g from �le
my $con�g = slbackup_readcon�g ($con�le);

Check if some information has changed
680 if ($q−>param("serverconf")) {

get data from form
$backupdir = $q−>param("backupdir");
$con�g−>{server_destdir} = $backupdir;

685 $servertype = $q−>param("servertype");
$con�g−>{server_type} = $servertype;

$serveruser = $q−>param("serveruser");
if ($serveruser eq "") {

690 $serveruser = "root";
}
$con�g−>{server_user} = $serveruser;

$serveraddr = $q−>param("serveraddr");
695 $con�g−>{server_address} = $serveraddr;

write to con�guration �le
slbackup_writecon�g ($con�le , $con�g) ;

700 $serverconf_changed = 1;
} else { #fetch from con�g−�le

$backupdir = $con�g−>{server_destdir};
$servertype = $con�g−>{server_type};
$serveruser = $con�g−>{server_user};

705 $serveraddr = $con�g−>{server_address};
}

set value of servertype (info to html−template)
if ($servertype eq "local") {

710 $localhost = 1;
} else {

$localhost = 0;
}

715 # See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('backup_con�gure_server', \

die_on_bad_params => 0);

114 Source code: webmin-slbackup

�ll template with text−strings
720 �ll _in_template($template);

$template−>param(backupdir => $backupdir,
localhost => $localhost,
serveraddr => $serveraddr,

725 serveruser => $serveruser,
serverconf_changed => $serverconf_changed,);

return $output . $template−>output;
}

730 #
This run mode ...
#
sub restore
{

735 my ($self) = @_;

fetch names on all computers that is possible to restore from
my @clients = list_clients_html();

740 # See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('restore', die_on_bad_params => 0);

�ll template with text−strings
�ll _in_template($template);

745
$template−>param(clients => \@clients, error => 0);
return $template−>output;

}

750
#
This run mode ...
#
sub restore_choose

755 {
my ($self) = @_;

Fetching query from webform
my $q = $self−>query();

760
�nd which client to restore to
my $client = $q−>param("client");

See the HTML::Template man page to understand all this.
765 my $template = $self−>load_tmpl('restore_choose', \

die_on_bad_params => 0);

F.1 WebminSLBackup.pm 115

�ll template with text−strings
�ll _in_template($template);

770
$template−>param(client => $client, error => 0, error_msg => "",);
return $template−>output;

}

775 #
This run mode ...
#
sub restore_choose_snapshot
{

780 my ($self) = @_;
my $restoredir;
my @restoredirs;

Fetching query from webform
785 my $q = $self−>query();

�nd which client to restore to and what type of restore (full or not)
my $client = $q−>param("client");
my $type = $q−>param("type");

790
if ($type eq " full ") {

my @�les = list_�les($client) ;
for (my $i = 0; $i < scalar (@�les); $i++) {

push (@restoredirs, { id => "dir$i", location => $�les[$i]});
795 }

} else {
not full restore −> directory has been passed with a web−form
$restoredir = $q−>param("dir0");
@restoredirs = ({ id => 'dir0', location => $q−>param("dir0") });

800 $type = "not_full";
}

�nd the available snapshots from the client
my @snapshots = list_snapshots ($client, $type, $restoredir);

805
if there are no snapshots and type not equals full , give warning
if (scalar (@snapshots) eq 0 and $q−>param("type") ne "full") {

my $error_msg = $text{"error_no_snapshots_avail"};

810 # See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('restore_choose', \

die_on_bad_params => 0);

�ll template with text−strings
815 �ll _in_template($template);

116 Source code: webmin-slbackup

$template−>param(client => $client, error => 1,
error_msg => $error_msg);

return $template−>output;
820 } elsif (scalar (@snapshots) eq 0 and $q−>param("type") eq "full") {

if there are no snapshots and type equals full
my $error_msg = $text{"error_no_snapshots_avail_client"};

fetch names on all computers that is possible to restore from
825 my @clients = list_clients_html();

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('restore', die_on_bad_params => 0);

830 # �ll template with text−strings
�ll _in_template($template);

$template−>param(clients => \@clients, error => 1,
error_msg => $error_msg,);

835 return $template−>output;
} else {

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('restore_choose_snapshot', \

die_on_bad_params => 0);
840

�ll template with text−strings
�ll _in_template($template);

$template−>param(backuptype => $type, client => $client,
845 restoredirs => \@restoredirs,

snapshots => \@snapshots,);
return $template−>output;

}
}

850
#
This run mode ...
#
sub restore_execute

855 {
my ($self) = @_;

Fetching query from webform
my $q = $self−>query();

860
fetch con�g from con�guration �le
my $con�g = slbackup_readcon�g ($con�le);

�nd which client to restore to

F.1 WebminSLBackup.pm 117

865 my $client = $q−>param("client");

�nd what kind of backup (full / not full)
my $backuptype = $q−>param("backuptype");

870 # �nd which snapshot to restore from
my $temp = $q−>param("snapshot");
my ($timestamp, $�letype) = split (/;/, $q−>param("snapshot"));
my $snapshot = ssepoch_to_iso ($timestamp);

875 # �nd which directory to restore to
my $targetdir = $q−>param("targetdir");

�nd which directories/ �les to restore
my $i = 0;

880 my $tempentry;
my @restoredirs;
while ($tempentry = $q−>param("dir" . $i)) {

push @restoredirs, { id => "dir" . $i, location => $tempentry };
$i++;

885 }

build the execute string
my $execstr = "rdi�−backup −−print−statistics −−restore−as−of $timestamp ";

890 my $overwrite = $q−>param("overwrite");
if ($overwrite eq "on") {

$execstr .= "−−force ";
}

895 if ($con�g−>{server_type} eq "extern") {
my $user = $con�g−>{server_user};
if ($user eq "") {

$user = "root";
}

900 my $address = $con�g−>{server_address};
$execstr .= "$user" . "@" . "$address" . "::"

}
my $destdir = $con�g−>{server_destdir};
$execstr .= "$destdir" . "/" . "$client";

905 my $restoredir = $restoredirs[0]−>{location};

restore �le to the computer webmin runs on (until later)...
#if ($con�g−>{client}−>{$client}−>{type} eq "extern") {
my $user = $con�g−>{client}−>{$client}−>{user};

910 # if ($user eq "") {
$user = "root";
}
my $address = $con�g−>{client}−>{$client}−>{address};

118 Source code: webmin-slbackup

$execstr .= "$user" . "@" . "$address" . "::";
915 #}

if ($backuptype eq "full") {
$execstr .= "/ $targetdir";

} else {
$execstr .= "$restoredir $targetdir";

920 }

execute restore
my $output;
my $target;

925 my $retval;
if ($targetdir eq "/") {

we wont let any user do this...
$output = $text{"restore_not_allow"};
$retval = 0;

930 } else {
$output = `$execstr 2>&1`;
$retval = $?;
if ($retval ne 0) {

$retval = 0;
935 } else {

$retval = 1;
}

}

940 # See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('restore_execute', \

die_on_bad_params => 0);

�ll template with text−strings
945 �ll _in_template($template);

$template−>param(client => $client, restoredirs => \@restoredirs,
restorelog => $output, snapshot => $snapshot,
success => $retval, targetdir => $targetdir,);

950 return $template−>output;
}

#
This run mode ...

955 #
sub maint
{
my ($self) = @_;
my $client;

960 my $delete_con�rm;
my $execstr;
my $output;

F.1 WebminSLBackup.pm 119

my $retval;

965 # Fetching query from webform
my $q = $self−>query();

check if this is the return from deleted snapshots
if ($q−>param("client")) {

970 # set the bool delete_con�rm
$delete_con�rm = 1;

fetch data about the client and snapshot to delete older than
$client = $q−>param("client");

975 my $snapshot = $q−>param("snapshot");

fetch data about backup server
my $con�g = slbackup_readcon�g ($con�le);
my ($server_address, $server_destdir, $server_type, $server_user) =

980 list_server_con�g();

delete data
$execstr = "rdi�−backup −−force −−remove−older−than $snapshot ";
if ($server_type eq "extern") {

985 $execstr .= "$server_user" . "@" . "$server_address" . "::";
}
if (grep (/\/$/, $server_destdir)) {

$execstr .= "$server_destdir";
} else {

990 $execstr .= "$server_destdir" . "/";
}
$execstr .= "$client";

execute restore
995 $output = `$execstr 2>&1`;

$retval = $?;
if ($retval ne 0) {

$retval = 0;
} else {

1000 $retval = 1;
}

$delete_con�rm = 1;
} else {

1005 # set the bool delete_con�rm to 0 and the string client to ""
$delete_con�rm = 0;
$client = "";

}

1010 # �nd all available computers
my @clients = list_clients();

120 Source code: webmin-slbackup

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('maint', die_on_bad_params => 0);

1015
�ll template with text−strings
�ll _in_template($template);

$template−>param(client => $client, clients => \@clients,
1020 delete_con�rm => $delete_con�rm,

delete_log => $output, success => $retval,);
return $template−>output;

}

1025 #
This run mode ...
#
sub maint_delete_older
{

1030 my ($self) = @_;
my $deleting_none = 0;

Fetching query from webform
my $q = $self−>query();

1035
�nd which client to delete snapshots for
my $client = $q−>param("client");

�nd all available snapshots
1040 my @snapshots_all = list_snapshots($client, "full", "");

my @snapshots;
for (my $i = (scalar (@snapshots_all) − 2); $i ge 0; $i−−) {

push (@snapshots, $snapshots_all[$i]);
}

1045
check number of snapshots available
(only one, none is going to be deleted)
if (scalar (@snapshots) le 0) {

$deleting_none = 1;
1050 }

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('maint_delete_older', \

die_on_bad_params => 0);
1055

�ll template with text−strings
�ll _in_template($template);

$template−>param(client => $client, deleting_none => $deleting_none,
1060 snapshots => \@snapshots,);

F.1 WebminSLBackup.pm 121

return $template−>output;
}

#
1065 # This run mode ...

#
sub maint_delete_con�rm
{
my ($self) = @_;

1070
Fetching query from webform
my $q = $self−>query();

�nd which client to delete snapshots for
1075 my $client = $q−>param("client");

�nd the latest snapshot to keep
my ($snapshot, $stype) = split (/;/, $q−>param("snapshot"));

1080 # �nd which snapshots will be deleted
my @snapshots = list_snapshots($client, "full", "");
my @snapshots_deleted;
for my $snap (@snapshots) {

#FIXME − something wrong here...
1085 ($snap, my $temp) = split (/;/, $snap−>{id});

if ($snap lt $snapshot) {
my $time = ssepoch_to_iso ($snap);
push (@snapshots_deleted, {date => $time});

}
1090 }

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('maint_delete_con�rm', \

die_on_bad_params => 0);
1095

�ll template with text−strings
�ll _in_template($template);

$template−>param(client => $client, snapshot => $snapshot,
1100 snapshots_deleted => \@snapshots_deleted,);

return $template−>output;
}

#
1105 # This run mode ...

#
sub sshkeys
{
my ($self) = @_;

122 Source code: webmin-slbackup

1110 my $client;
my $client_publickey_added = 0;
my $client_publickey_deleted = 0;
my $client_keys_recreated = 0;
my $error_msg;

1115 my $retval;

Fetching query from webform
my $q = $self−>query();

1120 ## �nd information about the localhost
my $con�g = slbackup_readcon�g ($con�le);

check if some action was done and returned to this page
we would not want to delete sshkeys until slbackup is using it's own

1125 # SSH private/public−keys
#if ($q−>param("action") eq "delete") {
delete clients public−key
$client = $q−>param("client");
$client_publickey_deleted = 1;

1130 # my $type = $q−>param("type");
my $address;
my $username;
if ($type eq "server") {

$address = $con�g−>{server_address};
1135 # $username = $con�g−>{server_user};

} else {
$address = $con�g−>{client}−>{$client}−>{address};
$username = $con�g−>{client}−>{$client}−>{user};
}

1140 # $error_msg = ssh_session ("delsshpubkey", $address, $username, "");

if ($q−>param("action") eq "add") {
add public key to the client
$client = $q−>param("client");

1145 $client_publickey_added = 1;
my $password = $q−>param("password");
my $address;
my $username;
if ($q−>param("type") eq "backupserver") {

1150 $address = $con�g−>{server_address};
$username = $con�g−>{server_user};

} else {
$address = $con�g−>{client}−>{$client}−>{address};
$username = $con�g−>{client}−>{$client}−>{user};

1155 }
$error_msg = ssh_session ("addsshpubkey", $address, $username,

$password);
} elsif ($q−>param("action") eq "create") {

F.1 WebminSLBackup.pm 123

create private/public key pair on localhost
1160 my $cmd = 'ssh−keygen −t dsa −N "" −f ~/.ssh/id_dsa';

my $output = `$cmd 2>&1`;
$retval = $?;
if ($retval ne 0) {

$retval = 0;
1165 } else {

$retval = 1;
}

if (! $retval) {
1170 $error_msg = "
\n" . $output;

}
}

hostname
1175 my $localhost = `hostname`;

for my $tmpclient (keys %{$con�g−>{client}}) {
if ($con�g−>{client}−>{$tmpclient}−>{type} eq "local") {

$localhost = "$tmpclient";
}

1180 }

status of the host
my @sshprivstat = stat ("/root/.ssh/id_dsa");
my @sshpubstat = stat ("/root/.ssh/id_dsa.pub");

1185 my $localhost_status;
my $localhost_choises;
only checking that the size is greater then zero
if (($sshprivstat [7] gt 0) and ($sshpubstat[7] gt 0)) {

$localhost_status = $text{"sshkeys_pair_avail"};
1190 # we don't want to be able to recreate ssh key pair after all

it can break other things depending on the ssh key pair located
in /root/.ssh/id_dsa[.pub]
$localhost_choises = " ";

} else {
1195 $localhost_status = $text{"sshkeys_pair_unavail"};

$localhost_choises = " ";
$localhost_choises =

"(" .
$text{create} . ")";

1200 }

�nd information about the backup server
my ($server_address, $server_destdir, $server_type, $server_user) =

list_server_con�g();
1205

my $server_status;
my $server_choises = " ";

124 Source code: webmin-slbackup

check if server _is_ localhost
if ($server_type eq "local") {

1210 $server_status = $text{"sshkeys_not_needed"};
} elsif ($localhost_status eq $text{"sshkeys_pair_unavail"}) {

$server_status = $text{"sshkeys_pub_unavail"} . " $localhost";
$server_choises = " ";

} else {
1215 # if not, test ssh connection with rdi�−backup −V

my $execstr = "ssh $server_user" . "@" .
"$server_address rdi�−backup −V";

if (` $execstr ` eq ` rdi�−backup −V`) {
$server_status = $text{"sshkeys_pub_work"};

1220 $server_choises = " ";
we do not want to delete keys until slbackup uses it's own SSH keys
$server_choises =
"(" .
$text{"delete"} . ")";

1225 } else {
$server_status = $text{"sshkeys_pub_notwork"};
$server_choises = " ";
$server_choises =

"(" .
1230 $text{"add"} . ")";

}
}

�nd the computers available in the con�guration
1235 # hostname, status, choises

my @clients = list_clients();
my @clients_var;

for my $bclient (keys %{$con�g−>{client}}) {
1240 my $client_status;

my $client_choises;
if ($con�g−>{client}−>{$bclient}−>{type} eq "extern") {

if keypair is not available on localhost , none of the clients
public keys could work

1245 if ($localhost_status eq $text{"sshkeys_pair_unavail"}) {
set same status and choises on all clients
$client_status = $text{"sshkeys_pub_unavail"} . " $localhost";
$client_choises = " ";

} else {
1250 my $client_address = $con�g−>{client}−>{$bclient}−>{address};

my $client_user = $con�g−>{client}−>{$bclient}−>{user};
my $execstr = "ssh $client_user" . "@" .

"$client_address rdi�−backup −V";
if (` $execstr ` eq ` rdi�−backup −V`) {

1255 $client_status = $text{"sshkeys_pub_work"};
we do not want to delete keys until slbackup uses it's own keys

F.1 WebminSLBackup.pm 125

$client_choises =
"(" .
$text{"delete"} . ")";

1260 } else {
$client_status = $text{"sshkeys_pub_notwork"};
$client_choises =

"(" .
$text{"add"} . ")";

1265 }
}
push (@clients_var, { client => $bclient,

client_status => $client_status,
client_choises => $client_choises });

1270 }
}

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('sshkeys', die_on_bad_params => 0);

1275
�ll template with text−strings
�ll _in_template($template);

check if something returned an error
1280 my $error = 0;

if ($error_msg ne "") {
$error = 1;

}

1285 $template−>param(localhost => $localhost,
localhost_status => $localhost_status,
localhost_choises => $localhost_choises,
backupserver => $server_address,
backupserver_status => $server_status,

1290 backupserver_choises => $server_choises,
clients => \@clients_var,
client => $client,
client_publickey_added => $client_publickey_added,
client_publickey_deleted => $client_publickey_deleted,

1295 client_keys_recreated => $client_keys_recreated,
error => $error, error_msg => $error_msg,);

return $template−>output;
}

1300
#
This run mode ...
#
sub sshkeys_add

1305 {

126 Source code: webmin-slbackup

my ($self) = @_;

Fetching query from webform
my $q = $self−>query();

1310

check if the computer to add a pubkey to is the server
and set address and user−variables
my $type = $q−>param("type");

1315 my $client;
my $username;
my $address;
my $con�g = slbackup_readcon�g();
if ($type eq "server") {

1320 $client = $con�g−>{server_address};
$username = $con�g−>{server_user};
$address = $client;
$type = "backupserver";

} else {
1325 $client = $q−>param("client");

$username = $con�g−>{client}−>{$client}−>{user};
$address = $con�g−>{client}−>{$client}−>{address};
$type = "client";

}
1330

See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('sshkeys_add', \

die_on_bad_params => 0);

1335 # �ll template with text−strings
�ll _in_template($template);

$template−>param(client => $client, username => $username,
address => $address, type => $type,);

1340 return $template−>output;
}

#
1345 # This run mode ...

#
sub sshkeys_create
{
my ($self) = @_;

1350
See the HTML::Template man page to understand all this.
my $template = $self−>load_tmpl('sshkeys_create', \

die_on_bad_params => 0);

F.1 WebminSLBackup.pm 127

1355 # �ll template with text−strings
�ll _in_template($template);

return $template−>output;
}

1360

#
This run mode ...
#

1365 sub sshkeys_delete
{
my ($self) = @_;

Fetching query from webform
1370 my $q = $self−>query();

fetch con�guration
my $con�g = slbackup_readcon�g ($con�le);

1375 # �nd which client to delete public key on
my $client = $q−>param("client");
my $type = $q−>param("type");

�nd server address if type eq server
1380 if ($type eq "server") {

$client = $con�g−>{server_address};
}

See the HTML::Template man page to understand all this.
1385 my $template = $self−>load_tmpl('sshkeys_delete', \

die_on_bad_params => 0);

�ll template with text−strings
�ll _in_template($template);

1390
$template−>param(client => $client, type => $type,);
return $template−>output;

}

1395 #
This run mode displays the information for one alternative group.
#
#sub list
#{

1400 # my ($self) = @_;
my $alternative = $self−>query−>param('name');
#
my $�le = $self−>parse_alternative(\$alternative);

128 Source code: webmin-slbackup

my $template = $self−>load_tmpl('list', die_on_bad_params => 0);
1405 # $template−>param(name => $�le−>{name}, links => $�le−>{links},

scriptname => $self−>param('scriptname'), tb => $self−>param('tb'),
cb => $self−>param('cb'),);
#
return $template−>output;

1410 #}

function to �ll in a template
(Thanks to Andreas Schuldei − webmin−ldap−skolelinux)

1415 sub �ll_in_template {
my ($template) = @_;

my @parameter_names = $template−>param();

1420 for my $name (@parameter_names) {

if ($text{$name}){
$template−>param ($name => $text{$name});

}
1425 }

$template−>param(JavaScriptStatus => generate_status())
if ($template−>query(name => "JavaScriptStatus"));

$template−>param(cb => $cb)
if ($template−>query(name => "cb"));

1430 $template−>param(tb => $tb)
if ($template−>query(name => "tb"));

$template−>param(CgiName => "entermanyusers.cgi")
if ($template−>query(name => "CgiName"));

}
1435

function to �ll in a template
(Thanks to Andreas Schuldei − webmin−ldap−skolelinux)
sub generate_status {

1440 my $status = "\"";
$status .= $ENV{'ANONYMOUS_USER'} ? "Anonymous user" :$remote_user;
$status .= $ENV{'SSL_USER'} ? " (SSL certi�ed)" :

$ENV{'LOCAL_USER'} ? " (Local user)" : "";
$status .= " logged into " .$text{'programname'};

1445 $status .= " " . get_webmin_version();
$status .= " on " . get_system_hostname();
$status .= "(" . $ENV{'HTTP_USER_AGENT'};
$status .= ")\"";

1450 return $status;
}

F.1 WebminSLBackup.pm 129

function that lists the clients in the con�guration
1455 # and applies some language data used in html−templates

(do not use data from this functions to other things than html−templates)
sub list_clients_html {

fetch con�guration
my $con�g = slbackup_readcon�g($con�le);

1460
my @clients;
for my $client (keys %{$con�g−>{client}}) {

push (@clients, {client => $client,
con�gure => $text{"con�gure"},

1465 delete => $text{"delete"},
choose_�lesdir => $text{"choose_�lesdir"},
restore_full => $text{"restore_full"}});

}
return @clients;

1470 }

function that lists the clients in the con�guration
sub list_clients {

1475 # fetch con�guration
my $con�g = slbackup_readcon�g($con�le);

my @clients;
for my $client (keys %{$con�g−>{client}}) {

1480 push (@clients, {client => $client});
}
return @clients;

}

1485
function that lists all �les / directories to back up on a clients
sub list_�les {

my ($client) = @_;;
fetch con�guration

1490 my $con�g = slbackup_readcon�g($con�le);

check if location is scalar or array , and put value(s) in @�les
my @�les;
if (ref ($con�g−>{client}−>{$client}−>{location}) eq "") {

1495 # check that location actually is something
if ($con�g−>{client}−>{$client}−>{location} ne "") {

push (@�les, $con�g−>{client}−>{$client}−>{location});
}

} elsif (ref ($con�g−>{client}−>{$client}−>{location}) eq "ARRAY") {
1500 foreach my $�le (@{$con�g−>{client}−>{$client}−>{location}}) {

push (@�les, $�le) ;

130 Source code: webmin-slbackup

}
}
return @�les;

1505 }

function that lists all �les / directories to back up on a clients
and applies some language data used in html−templates

1510 # (do not use data from this functions to other things than html−templates)
sub list_�les_html {

my ($client) = @_;;
fetch con�guration
my $con�g = slbackup_readcon�g($con�le);

1515
check if location is scalar or array , and put value(s) in @�les
my @�les;
if (ref ($con�g−>{client}−>{$client}−>{location}) eq "") {

check that location actually is something
1520 if ($con�g−>{client}−>{$client}−>{location} ne "") {

push (@�les, { �le => $con�g−>{client}−>{$client}−>{location},
delete => $text{"delete"},
remove => $text{"remove"},
client => $client});

1525 }
} elsif (ref ($con�g−>{client}−>{$client}−>{location}) eq "ARRAY") {

foreach my $�le (@{$con�g−>{client}−>{$client}−>{location}}) {
push (@�les, { �le => $�le,

delete => $text{"delete"},
1530 remove => $text{"remove"},

client => $client});
}

}
return @�les;

1535 }

#
sub list_snapshots {

1540 my ($client, $backup_type, $restoredir) = @_;

fetch client con�guration
my $con�g = slbackup_readcon�g ($con�le);
my $client_user = $con�g−>{client}−>{$client}−>{user};

1545 my $server_address = $con�g−>{server_address};
my $server_destdir = $con�g−>{server_destdir};
my $server_type = $con�g−>{server_type};
my $server_user = $con�g−>{server_user};

1550 # build execute string

F.1 WebminSLBackup.pm 131

my $execstr = "rdi�−backup −−parsable−output −−list−increments ";

if ($server_type eq "extern") {
$execstr .= "$server_user" . "@" . "$server_address" . "::";

1555 }

if ($backup_type eq "full") {
$execstr .= "$server_destdir" . "/" . "$client";

} else {
1560 $execstr .= "$server_destdir" . "/" . "$client" . "$restoredir";

}

my $output .= `$execstr 2>&1 | grep −v missing`;
my $retval = $?;

1565 if ($retval ne 0) {
$retval = 0;

} else {
$retval = 1;

}
1570

my @snapshots;

if ($retval eq 1 and ! ($output =~ /error/i)) {
my @lines = split (/\n/, $output);

1575 my $increments = scalar (@lines);

for (my $i = $increments − 1; $i >= 0; $i−−) {
$lines [$i] =~ /^(\d*)\s(\w*)$/;
my ($time_se, $type) = ($1, $2);

1580 my $id = "$time_se;$type";
my $time = ssepoch_to_iso($time_se);
push (@snapshots, { id => $id, time => $time });

}

1585 } else { # error handling
#FIXME, please :)

}

return @snapshots;
1590 }

return con�guration data about server
sub list_server_con�g {

1595 # fetch con�g from con�guration �les
my $con�g = slbackup_readcon�g ($con�le);

get server con�guration
my $address = $con�g−>{server_address};

132 Source code: webmin-slbackup

1600 my $destdir = $con�g−>{server_destdir};
my $type = $con�g−>{server_type};
my $user = $con�g−>{server_user};

return ($address, $destdir , $type, $user);
1605 }

reformat "seconds since epoch to "DDMMYYYY HH:MM"−format
sub ssepoch_to_iso {

1610 my ($timestamp) = @_;

return `date −d "1970−01−01 $timestamp sec UTC" −−iso−8601=minutes`;
}

1615
#
sub ssh_session {

my ($action, $address, $username, $password) = @_;
my $cmd;

1620
check action
if ($action eq "addsshpubkey") {

fetch ssh public key from ~/.ssh/id_dsa.pub
open (DSAPUB, "/root/.ssh/id_dsa.pub") ||

1625 return "Could not open public key on localhost";
my $sshpubkey = readline (*DSAPUB);
close (DSAPUB);

provide command to the SSH session
1630 $cmd = "echo −n '$sshpubkey' � ~$username/.ssh/authorized_keys";

} elsif ($action eq "delsshpubkey") {
fetch ssh public key from ~/.ssh/id_dsa.pub
open (DSAPUB, "/root/.ssh/id_dsa.pub") ||

return "Could not open public key on localhost";
1635 my $sshpubkey = readline (*DSAPUB);

close (DSAPUB);

delete ssh public key from ~/.ssh/authorized_keys
$cmd = "grep −v '$sshpubkey' ~$username/.ssh/authorized_keys > " .

1640 "~$username/.ssh/authorized_keys";
}

Check that host is up'n'running
#FIXME

1645
connect to host and execute command
(my $connect = Expect−>spawn("ssh −o StrictHostKeyChecking=no " .

"$username\@$address")) ||

F.1 WebminSLBackup.pm 133

return "Problems with SSH connection";
1650

if ($action ne "delsshpubkey") {
if ($connect−>expect(10, "assword: ")) {

print $connect "$password\r\n";
} else {

1655 return "Host did not ask for password";
}

}

recognise prompt...
1660 #FIXME − need a better solution here... (regexp and which fetches

more possible prompts)
if ($connect−>expect(10, '# ') || $connect−>expect(10, '$ ')) {

print $connect "$cmd\r";
} else {

1665 return "No prompt given by host";
}

if ($connect−>expect(10, '# ') || $connect−>expect(10, '$ ')) {
print $connect "exit\r";

1670 } else {
return "Prompt is not returned after executing command";

}

if (! ($connect−>expect(10, "closed"))) {
1675 return "Connection was not properly closed";

}

$connect−>hard_close();

1680 return "";
}

sub hostname_validate {
1685 my ($hostip, $trash) = @_;

my $hostip_valid = 0;

my $hosttest = '^([a−z]([−a−z\d]*[a−z\d])?[\.]?)+?$';

1690 my $iptest = '^(([01]?[0−9][0−9]?|2[0−4][0−9]|25[0−5])\.){3}([01]?[0−9][0−9]?|2[0−4][0−9]|25[0−5])$';

test if the hostname or ip−address is in a valid format
if (! ($hostip =~ /$hosttest/i or $hostip =~ /$iptest/)) {

return "" . $text{"error_str"} . ": " .
1695 $text{"hostname_not_valid"};

}

134 Source code: webmin-slbackup

test if the hostname or ip−address is reachable
my $p = Net::Ping−>new("icmp", 5);

1700 if ($p−>ping($hostip)) {
logger("hostname: $hostip, ping successfull\n");
$p−>close();
return undef;

} else {
1705 $p−>close();

logger("hostname: .$hostip., ping NOT successfull\n");
return "" . $text{'warn_str'} . ": " .

$text{'host_not_reachable'};
}

1710 }

sub logger {
open (LOG, "�$log�le");
my ($comment) = @_;

1715 my $now = strftime "%b %d %H:%M:%S", localtime;
print�ush LOG ("$now − $comment\n");
close (LOG);

}

1720
1;

__END__

